点击查看代码
import collections
import math
import torch
from torch import nn
from d2l import torch as d2l
class Seq2SeqEncoder(d2l.Encoder):
"""用于序列到序列学习的循环神经网络编码器"""
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
dropout=0, **kwargs):
super(Seq2SeqEncoder, self).__init__(**kwargs)
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.GRU(embed_size, num_hiddens, num_layers,
dropout=dropout)
def forward(self, X, *args):
X = self.embedding(X)
X = X.permute(1, 0, 2)
output, state = self.rnn(X)
return output, state
print('编码器的实现')
encoder = Seq2SeqEncoder(vocab_size=10, embed_size=8, num_hiddens=16,
num_layers=2)
encoder.eval()
X = torch.zeros((4, 7), dtype=torch.long)
output, state = encoder(X)
print('output.shape', output.shape)
print('state.shape', state.shape)
print('state[0].shape', state[0].shape)
class Seq2SeqDecoder(d2l.Decoder):
"""用于序列到序列学习的循环神经网络解码器"""
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
dropout=0, **kwargs):
super(Seq2SeqDecoder, self).__init__(**kwargs)
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.GRU(embed_size + num_hiddens, num_hiddens, num_layers,
dropout=dropout)
self.dense = nn.Linear(num_hiddens, vocab_size)
def init_state(self, enc_outputs, *args):
return enc_outputs[1]
def forward(self, X, state):
X = self.embedding(X).permute(1, 0, 2)
print('X.shape : ', X.shape)
print('state[-1].shape', state[-1].shape)
context = state[-1].repeat(X.shape[0], 1, 1)
X_and_context = torch.cat((X, context), 2)
print('context.shape : ', context.shape)
print('X_and_context.shape : ', X_and_context.shape)
"""
X.shape : torch.Size([7, 4, 8])
state[-1].shape torch.Size([4, 16])
context.shape : torch.Size([7, 4, 16])
X_and_context.shape : torch.Size([7, 4, 24])
"""
output, state = self.rnn(X_and_context, state)
output = self.dense(output).permute(1, 0, 2)
return output, state
print('实例化解码器')
decoder = Seq2SeqDecoder(vocab_size=10, embed_size=8, num_hiddens=16,
num_layers=2)
decoder.eval()
state = decoder.init_state(encoder(X))
output, state = decoder(X, state)
print('output.shape', output.shape)
"""
(batch_size, num_steps, vocab_size)
output.shape torch.Size([4, 7, 10])
"""
print('state.shape', state.shape)
"""
(num_layers, batch_size, num_hiddens)
state.shape torch.Size([2, 4, 16])
"""
print('损失函数 零值化屏蔽不相关的项')
def sequence_mask(X, valid_len, value=0):
"""在序列中屏蔽不相关的项"""
maxlen = X.size(1)
mask = torch.arange((maxlen), dtype=torch.float32,
device=X.device)[None, :] < valid_len[:, None]
"""
mask
tensor([[ True, False, False],
[ True, True, False]])
"""
"""
tensor([[False, True, True],
[False, False, True]])
"""
X[~mask] = value
return X
X = torch.tensor([[1, 2, 3], [4, 5, 6]])
print('sequence_mask(X, torch.tensor([1, 2]))',
sequence_mask(X, torch.tensor([1, 2])))
"""
sequence_mask(X, torch.tensor([1, 2]))
tensor([[1, 0, 0],
[4, 5, 0]])
"""
print('使用此函数屏蔽最后几个轴上的所有项')
X = torch.ones(2, 3, 4)
print(sequence_mask(X, torch.tensor([1, 2]), value=-1))
class MaskedSoftmaxCELoss(nn.CrossEntropyLoss):
"""带遮蔽的softmax交叉熵损失函数"""
def forward(self, pred, label, valid_len):
weights = torch.ones_like(label)
weights = sequence_mask(weights, valid_len)
self.reduction='none'
unweighted_loss = super().forward(
pred.permute(0, 2, 1), label)
weighted_loss = (unweighted_loss * weights).mean(dim=1)
return weighted_loss
print('代码健全性检查')
loss = MaskedSoftmaxCELoss()
print(loss(torch.ones(3, 4, 10), torch.ones((3, 4), dtype=torch.long),
torch.tensor([4, 2, 0])))
"""
tensor([2.3026, 1.1513, 0.0000])
"""
def train_seq2seq(net, data_iter, lr, num_epochs, tgt_vocab, device):
"""训练序列到序列模型"""
def xavier_init_weights(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
if type(m) == nn.GRU:
for param in m._flat_weights_names:
if "weight" in param:
nn.init.xavier_uniform_(m._parameters[param])
net.apply(xavier_init_weights)
net.to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
loss = MaskedSoftmaxCELoss()
net.train()
for epoch in range(num_epochs):
timer = d2l.Timer()
metric = d2l.Accumulator(2)
for batch in data_iter:
optimizer.zero_grad()
X, X_valid_len, Y, Y_valid_len = [x.to(device) for x in batch]
bos = torch.tensor([tgt_vocab['<bos>']] * Y.shape[0],
device=device).reshape(-1, 1)
dec_input = torch.cat([bos, Y[:, :-1]], 1)
Y_hat, _ = net(X, dec_input, X_valid_len)
l = loss(Y_hat, Y, Y_valid_len)
l.sum().backward()
d2l.grad_clipping(net, 1)
num_tokens = Y_valid_len.sum()
optimizer.step()
with torch.no_grad():
metric.add(l.sum(), num_tokens)
if (epoch + 1) % 10 == 0:
print('metric[0] / metric[1]:', metric[0] / metric[1])
print(f'loss {metric[0] / metric[1]:.3f}, {metric[1] / timer.stop():.1f} '
f'tokens/sec on {str(device)}')
print('创建和训练一个循环神经网络“编码器-解码器”模型')
embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.1
batch_size, num_steps = 64, 10
lr, num_epochs, device = 0.005, 300, torch.device('cpu')
train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
encoder = Seq2SeqEncoder(len(src_vocab), embed_size, num_hiddens, num_layers,
dropout)
decoder = Seq2SeqDecoder(len(tgt_vocab), embed_size, num_hiddens, num_layers,
dropout)
net = d2l.EncoderDecoder(encoder, decoder)
print('-------------------------')
print('predict')
def predict_seq2seq(net, src_sentence, src_vocab, tgt_vocab, num_steps,
device, save_attention_weights=False):
"""序列到序列模型的预测"""
net.eval()
src_tokens = src_vocab[src_sentence.lower().split(' ')] + [
src_vocab['<eos>']]
enc_valid_len = torch.tensor([len(src_tokens)], device=device)
src_tokens = d2l.truncate_pad(src_tokens, num_steps, src_vocab['<pad>'])
print('src_tokens.shape : ',
torch.tensor(src_tokens, dtype=torch.long, device=device).shape)
"""src_tokens.shape : torch.Size([10])"""
enc_X = torch.unsqueeze(
torch.tensor(src_tokens, dtype=torch.long, device=device), dim=0)
print('enc_X.shape : ', enc_X.shape)
"""enc_X.shape : torch.Size([1, 10])"""
enc_outputs = net.encoder(enc_X, enc_valid_len)
print('enc_outputs : ', type(enc_outputs[0]), type(enc_outputs[1]))
"""enc_outputs : <class 'torch.Tensor'> <class 'torch.Tensor'>"""
dec_state = net.decoder.init_state(enc_outputs, enc_valid_len)
print('dec_state.shape : ', dec_state.shape)
"""dec_state.shape : torch.Size([2, 1, 32])"""
print('tgt_vocab.shape : ',
torch.tensor(
[tgt_vocab['<bos>']], dtype=torch.long, device=device).shape)
"""tgt_vocab.shape : torch.Size([1])"""
dec_X = torch.unsqueeze(torch.tensor(
[tgt_vocab['<bos>']], dtype=torch.long, device=device), dim=0)
print('dec_X.shape : ', dec_X.shape)
"""dec_X.shape : torch.Size([1, 1])"""
output_seq, attention_weight_seq = [], []
for _ in range(num_steps):
Y, dec_state = net.decoder(dec_X, dec_state)
print('Y.shape : ', Y.shape)
"""Y.shape : torch.Size([1, 1, 194])"""
dec_X = Y.argmax(dim=2)
pred = dec_X.squeeze(dim=0).type(torch.int32).item()
print('pred : ', pred)
"""pred : 111"""
if save_attention_weights:
attention_weight_seq.append(net.decoder.attention_weights)
if pred == tgt_vocab['<eos>']:
break
output_seq.append(pred)
return ' '.join(tgt_vocab.to_tokens(output_seq)), attention_weight_seq
def bleu(pred_seq, label_seq, k):
"""计算BLEU"""
pred_tokens, label_tokens = pred_seq.split(' '), label_seq.split(' ')
len_pred, len_label = len(pred_tokens), len(label_tokens)
score = math.exp(min(0, 1 - len_label / len_label))
for n in range(1, k + 1):
num_matches, label_subs = 0, collections.defaultdict(int)
for i in range(len_label - n + 1):
print(' '.join(label_tokens[i: i + n]))
label_subs[' '.join(label_tokens[i: i + n])] += 1
for i in range(len_pred - n + 1):
if label_subs[' '.join(pred_tokens[i: i + n])] > 0:
num_matches += 1
label_subs[' '.join(pred_tokens[i: i + n])] -= 1
score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
return score
engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):
translation, attention_weight_seq = predict_seq2seq(
net, eng, src_vocab, tgt_vocab, num_steps, device)
print(f'{eng} => {translation}, bleu {bleu(translation, fra, k=2):.3f}')
break
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)