点击查看代码
import os
import torch
from d2l import torch as d2l
print('下载数据集')
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip',
'94646ad1522d915e7b0f9296181140edcf86a4f5')
def read_data_nmt():
"""载入“英语-法语”数据集"""
data_dir = d2l.download_extract('fra-eng')
with open(os.path.join(data_dir, 'fra.txt'), 'r',
encoding='utf-8') as f:
return f.read()
raw_text = read_data_nmt()
print(raw_text[:75])
"""
Go. Va !
Hi. Salut !
Run! Cours !
Run! Courez !
Who? Qui ?
Wow! Ça alors !
"""
print('预处理')
def preprocess_nmt(text):
"""预处理“英语-法语”数据集"""
def no_space(char, prev_char):
return char in set(',.!?') and prev_char != ' '
text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()
out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else char
for i, char in enumerate(text)]
return ''.join(out)
text = preprocess_nmt(raw_text)
print(text[:80])
"""
go . va !
hi . salut !
run ! cours !
run ! courez !
who ? qui ?
wow ! ça alors !
"""
print('词元化')
def tokenize_nmt(text, num_examples=None):
"""词元化“英语-法语”数据数据集"""
source, target = [], []
for i, line in enumerate(text.split('\n')):
if num_examples and i > num_examples:
break
parts = line.split('\t')
if len(parts) == 2:
source.append(parts[0].split(' '))
target.append(parts[1].split(' '))
return source, target
source, target = tokenize_nmt(text)
print(source[:6], target[:6])
"""
[['go', '.'], ['hi', '.'], ['run', '!'], ['run', '!'], ['who', '?'], ['wow', '!']]
[['va', '!'], ['salut', '!'], ['cours', '!'], ['courez', '!'], ['qui', '?'], ['ça', 'alors', '!']]
"""
src_vocab = d2l.Vocab(source, min_freq=2,
reserved_tokens=['<pad>', '<bos>', '<eos>'])
print('src_vocab: ', len(src_vocab))
"""
src_vocab: 10012
"""
print(list(src_vocab.token_to_idx.items())[:10])
"""
[('<unk>', 0), ('<pad>', 1), ('<bos>', 2), ('<eos>', 3),
('.', 4), ('i', 5), ('you', 6), ('to', 7), ('the', 8), ('?', 9)]
"""
"""
句子长度是不一样的
句子变成一个同一个长度 固定一个长度
"""
def truncate_pad(line, num_steps, padding_token):
"""截断或填充文本序列"""
if len(line) > num_steps:
return line[:num_steps]
return line + [padding_token] * (num_steps - len(line))
print('截断或填充文本序列')
print(source[0])
print(truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>']))
"""
['go', '.']
[47, 4, 1, 1, 1, 1, 1, 1, 1, 1]
"""
def build_array_nmt(lines, vocab, num_steps):
"""将机器翻译的文本序列转换成小批量"""
lines = [vocab[l] for l in lines]
lines = [l + [vocab['<eos>']] for l in lines]
array = torch.tensor([truncate_pad(
l, num_steps, vocab['<pad>']) for l in lines])
valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)
return array, valid_len
def load_data_nmt(batch_size, num_steps, num_examples=600):
"""返回翻译数据集的迭代器和词表"""
text = preprocess_nmt(read_data_nmt())
source, target = tokenize_nmt(text, num_examples)
src_vocab = d2l.Vocab(source, min_freq=2,
reserved_tokens=['<pad>', '<bos>', '<eos>'])
tgt_vocab = d2l.Vocab(target, min_freq=2,
reserved_tokens=['<pad>', '<bos>', '<eos>'])
src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)
tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)
data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)
data_iter = d2l.load_array(data_arrays, batch_size)
return data_iter, src_vocab, tgt_vocab
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=1, num_steps=4)
for X, X_valid_len, Y, Y_valid_len in train_iter:
print('X:', X.type(torch.int32))
print('X的有效长度:', X_valid_len)
print('Y:', Y.type(torch.int32))
print('Y的有效长度:', Y_valid_len)
break
"""
batch_size=2
num_steps=8
X: tensor([[13, 46, 48, 4, 3, 1, 1, 1],
[ 9, 28, 4, 3, 1, 1, 1, 1]], dtype=torch.int32)
X的有效长度: tensor([5, 4])
Y: tensor([[80, 23, 82, 5, 3, 1, 1, 1],
[ 0, 19, 5, 3, 1, 1, 1, 1]], dtype=torch.int32)
Y的有效长度: tensor([5, 4])
"""
"""
batch_size=1
num_steps=4
X: tensor([[109, 81, 4, 3]], dtype=torch.int32)
X的有效长度: tensor([4])
Y: tensor([[0, 4, 3, 1]], dtype=torch.int32)
Y的有效长度: tensor([3])
"""
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)