点击查看代码
import collections
import re
from d2l import torch as d2l
print('读取数据集')
d2l.DATA_HUB['time_machine'] = (d2l.DATA_URL + 'timemachine.txt',
'090b5e7e70c295757f55df93cb0a180b9691891a')
def read_time_machine():
"""将时间机器数据集加载到文本行的列表中"""
with open(d2l.download('time_machine'), 'r') as f:
lines = f.readlines()
return [re.sub('[^A-Za-z]+', ' ', line).strip().lower() for line in lines]
lines = read_time_machine()
print(f'# 文本总行数: {len(lines)}')
print(lines[0])
print(lines[10])
print('词元化')
def tokenize(lines, token='word'):
"""将文本行拆分为单词或字符词元"""
if token == 'word':
return [line.split() for line in lines]
elif token == 'char':
return [list(line) for line in lines]
else:
print('错误:未知词元类型:' + token)
tokens = tokenize(lines)
tokens1 = tokenize(lines, token='char')
for i in range(11):
print(lines[i])
print(tokens[i])
print(tokens1[i])
class Vocab:
"""文本词表"""
def __init__(self, tokens=None, min_freq=0, reserved_tokens=None):
if tokens is None:
tokens = []
if reserved_tokens is None:
reserved_tokens = []
counter = count_corpus(tokens)
"""
list = sorted(iterable, key=None, reverse=False)
其中,iterable 表示指定的序列,key 参数可以自定义排序规则;
reverse 参数指定以升序(False,默认)还是降序(True)进行排序。
sorted() 函数会返回一个排好序的列表。
#字典默认按照key进行排序
a = {4:1, 5:2, 3:3, 2:6, 1:8}
print(sorted(a.items()))
## [(1, 8), (2, 6), (3, 3), (4, 1), (5, 2)]
x:x[]字母可以随意修改,
x[1]表示以元组的第二个元素排序
[0]按照第一维,[1]按照第二维。
"""
self._token_freqs = sorted(counter.items(), key=lambda x: x[1],
reverse=True)
self.idx_to_token = ['<unk>'] + reserved_tokens
"""
names = ["Alice","Bob","Carl"]
for index,value in enumerate(names):
print(f'{index}: {value}')
0: Alice
1: Bob
2: Carl
"""
self.token_to_idx = {token: idx
for idx, token in enumerate(self.idx_to_token)}
for token, freq in self._token_freqs:
if freq < min_freq:
break
if token not in self.token_to_idx:
self.idx_to_token.append(token)
self.token_to_idx[token] = len(self.idx_to_token) - 1
def __len__(self):
return len(self.idx_to_token)
def __getitem__(self, tokens):
if not isinstance(tokens, (list, tuple)):
return self.token_to_idx.get(tokens, self.unk)
return [self.__getitem__(token) for token in tokens]
def to_tokens(self, indices):
if not isinstance(indices, (list, tuple)):
return self.idx_to_token[indices]
return [self.idx_to_token[index] for index in indices]
@property
def unk(self):
return 0
@property
def token_freqs(self):
return self._token_freqs
def count_corpus(tokens):
"""统计词元的频率"""
if len(tokens) == 0 or isinstance(tokens[0], list):
tokens = [token for line in tokens for token in line]
"""
nums = [1, 2, 3, 1, 2, 1]
counts = collections.Counter(nums)
print(counts)
## Counter({1: 3, 2: 2, 3: 1})
"""
return collections.Counter(tokens)
print('构建词汇表')
vocab = Vocab(tokens)
print(list(vocab.token_to_idx.items())[:10])
vocab1 = Vocab(tokens1)
print(list(vocab1.token_to_idx.items())[:10])
print(1)
print('将每一条文本行转换成数字索引表')
for i in range(10):
print('words:', tokens[i])
print('indices:', vocab[tokens[i]])
for i in range(10):
print('words:', tokens1[i])
print('indices:', vocab[tokens1[i]])
print('将所有功能打包到load_corpus_time_machine函数中')
def load_corpus_time_machine(max_tokens=-1):
"""返回时光机器数据集的词元索引列表和词表"""
lines = read_time_machine()
tokens = tokenize(lines, 'char')
vocab = Vocab(tokens)
corpus = [vocab[token] for line in tokens for token in line]
if max_tokens > 0:
corpus = corpus[:max_tokens]
return corpus, vocab
corpus, vocab = load_corpus_time_machine()
print(len(corpus), len(vocab))
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)