点击查看代码
import torch
x = torch.tensor(3.0)
y = torch.tensor(2.0)
print(x + y, x * y, x ** y)
x = torch.arange(4)
print(x)
print(x[2])
print(len(x))
print(x.shape)
A = torch.arange(20).reshape(5, -1)
print(A)
print(A.T)
B = torch.tensor([
[1, 2, 3],
[2, 4, 5],
[3, 5, 6]
])
print(B == B.T)
X = torch.arange(36).reshape(3, 4, -1)
print(X)
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone()
print(id(A), id(B))
print(A + B)
print(A)
A_sum_axis0 = A.sum(axis=0)
print(A_sum_axis0)
print(A_sum_axis0.shape)
A_sum_axis0 = A.sum(axis=1)
print(A_sum_axis0)
print(A_sum_axis0.shape)
A_sum_axis0 = A.sum(axis=[0, 1])
print(A_sum_axis0)
print(A_sum_axis0.shape)
print(A.mean(), A.sum() / A.numel())
print(A.mean(axis=0), A.sum(axis=0) / A.shape[0])
print(A.mean(axis=1), A.sum(axis=1) / A.shape[1])
sum_A = A.sum(axis=1, keepdims=True)
print(sum_A)
print(A / sum_A)
print(A.cumsum(axis=0))
x = torch.arange(4, dtype=torch.float32)
print(x)
y = torch.ones(4, dtype=torch.float32)
print(y)
print(torch.dot(x, y))
print(torch.sum(x * y))
print(A.shape)
print(x.shape)
print(torch.mv(A, x))
B = torch.ones(4, 3)
print(A)
print(B)
print(torch.mm(A, B))
u = torch.tensor([3.0 , -4.0])
print(torch.norm(u))
print(torch.abs(u).sum())
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术