准备数据集
点击查看代码
train_data = torchvision.datasets.CIFAR10("./dataset1", train=True, download=True,
transform=torchvision.transforms.ToTensor())
test_data = torchvision.datasets.CIFAR10("./dataset1", train=False, download=True,
transform=torchvision.transforms.ToTensor())
数据集长度
点击查看代码
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练集长度:{}".format(train_data_size))
print("测试集长度:{}".format(test_data_size))
利用DataLoader加载数据集
点击查看代码
train_data_loader = DataLoader(train_data, batch_size=64)
test_data_loader = DataLoader(test_data, batch_size=64)
搭建神经网络
点击查看代码
class Test(nn.Module):
def __init__(self):
super().__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, 1, 2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
创建网络模型
点击查看代码
test = Test()
创建损失函数
点击查看代码
loss_fn = nn.CrossEntropyLoss()
创建优化器
点击查看代码
learning_rate = 1e-2
optimizer = torch.optim.SGD(test.parameters(), lr=learning_rate)
设置训练网络的一些参数
点击查看代码
total_train_step = 0
total_test_step = 0
epoch = 10
writer = SummaryWriter("./log_train")
训练与测试
点击查看代码
for i in range(epoch):
print("----------第{}轮训练开始----------".format(i+1))
# 测试步骤开始
# 针对特定的层有作用
# test.train()
for data in train_data_loader:
imgs, targets = data
output = test(imgs)
loss = loss_fn(output, targets)
# 优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("训练次数: {},loss: {}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 测试步骤
# 针对特定的层有作用
# test.eval()
total_test_loss = 0
# 整体正确的个数
total_accuracy = 0
with torch.no_grad():
for data in test_data_loader:
imgs, targets = data
output = test(imgs)
loss = loss_fn(output, targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (output.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体测试集的loss: {}".format(total_test_loss))
print("整体测试集的正确率: {}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
total_test_step = total_test_step + 1
torch.save(test, "test_{}.pth".format(i))
print("模型已保存")
writer.close()
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 单线程的Redis速度为什么快?
· 展开说说关于C#中ORM框架的用法!
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· Pantheons:用 TypeScript 打造主流大模型对话的一站式集成库
· SQL Server 2025 AI相关能力初探