大数据学习14_MapReduce规约&流量统计案例

规约Combiner

概念

每一个 map 都可能会产生大量的本地输出,Combiner 的作用就是对 map 端的输出先做一次 合并,以减少在 map 和 reduce 节点之间的数据传输量,以提高网络IO 性能,是 MapReduce 的一种优化手段之一

  • combiner 是 MR 程序中 Mapper 和 Reducer 之外的一种组件
  • combiner 组件的父类就是 Reducer
  • combiner 和 reducer 的区别在于运行的位置

            Combiner 是在每一个 maptask 所在的节点运行 Reducer 是接收全局所有 Mapper 的输出结果

  • combiner 的意义就是对每一个 maptask 的输出进行局部汇总,以减小网络传输量

一个图看懂规约

 

实现步骤

  1. 自定义一个 combiner 继承 Reducer,重写 reduce 方法
  2. 在 job 中设置 job.setCombinerClass(CustomCombiner.class)

combiner 能够应用的前提是不能影响最终的业务逻辑,而且,combiner 的输出 kv 应该跟 reducer 的输入 kv 类型要对应起来。

public class MyCombiner extends Reducer<Text,LongWritable,Text,LongWritable> {
    /*
       key : hello
       values: <1,1,1,1>
     */
    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
        long count = 0;
        //1:遍历集合,将集合中的数字相加,得到 V3
        for (LongWritable value : values) {
            count += value.get();
        }
        //2:将K3和V3写入上下文中
        context.write(key, new LongWritable(count));
    }
}

  

MapReduce案例-流量统计

需求:

统计每个手机号的上行数据包总和,下行数据包总和,上行总流量之和,下行总流量之和 分 析:以手机号码作为key值,上行流量,下行流量,上行总流量,下行总流量四个字段作为 value值,然后以这个key,和value作为map阶段的输出,reduce阶段的输入

一张图看懂编程流程和思路

 

Step 1: 自定义map的输出value对象FlowBean

public class FlowBean implements Writable {
    private Integer upFlow;  //上行数据包数
    private Integer downFlow;  //下行数据包数
    private Integer upCountFlow; //上行流量总和
    private Integer downCountFlow;//下行流量总和

    public Integer getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(Integer downFlow) {
        this.downFlow = downFlow;
    }

    public Integer getUpCountFlow() {
        return upCountFlow;
    }

    public void setUpCountFlow(Integer upCountFlow) {
        this.upCountFlow = upCountFlow;
    }

    public Integer getDownCountFlow() {
        return downCountFlow;
    }

    public void setDownCountFlow(Integer downCountFlow) {
        this.downCountFlow = downCountFlow;
    }

    public Integer getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(Integer upFlow) {
        this.upFlow = upFlow;
    }
    @Override
    public String toString() {
        return  upFlow +
                "\t" + downFlow +
                "\t" + upCountFlow +
                "\t" + downCountFlow;
    }
    //序列化方法
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeInt(upFlow);
        out.writeInt(downFlow);
        out.writeInt(upCountFlow);
        out.writeInt(downCountFlow);
    }
    //反序列化
    @Override
    public void readFields(DataInput in) throws IOException {
        this.upFlow = in.readInt();
        this.downFlow = in.readInt();
        this.upCountFlow = in.readInt();
        this.downCountFlow = in.readInt();
    }
}

  

Step 2: 定义FlowMapper类

public class FlowCountMapper extends Mapper<LongWritable,Text, Text,FlowBean> {
    /*
      将K1和V1转为K2和V2:
      K1              V1
      0               1363157985059 	13600217502	00-1F-64-E2-E8-B1:CMCC	120.196.100.55	www.baidu.com	综合门户	19	128	1177	16852	200
     ------------------------------
      K2              V2
      13600217502     FlowBean(19	128	1177	16852)
     */

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //1:拆分行文本数据,得到手机号--->K2
        String[] split = value.toString().split("\t");
        String phoneNum = split[1];

        //2:创建FlowBean对象,并从行文本数据拆分出流量的四个四段,并将四个流量字段的值赋给FlowBean对象
        FlowBean flowBean = new FlowBean();

        flowBean.setUpFlow(Integer.parseInt(split[6]));
        flowBean.setDownFlow(Integer.parseInt(split[7]));
        flowBean.setUpCountFlow(Integer.parseInt(split[8]));
        flowBean.setDownCountFlow(Integer.parseInt(split[9]));

        //3:将K2和V2写入上下文中
        context.write(new Text(phoneNum), flowBean);
    }
}

  

Step 3: 定义FlowReducer类

public class FlowCountReducer extends Reducer<Text,FlowBean, Text,FlowBean> {
    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
        //1:遍历集合,并将集合中的对应的四个字段累计
        Integer upFlow = 0;  //上行数据包数
        Integer downFlow = 0;  //下行数据包数
        Integer upCountFlow = 0; //上行流量总和
        Integer downCountFlow = 0;//下行流量总和

        for (FlowBean value : values) {
            upFlow += value.getUpFlow();
            downFlow += value.getDownFlow();
            upCountFlow += value.getUpCountFlow();
            downCountFlow += value.getDownCountFlow();
        }

        //2:创建FlowBean对象,并给对象赋值  V3
        FlowBean flowBean = new FlowBean();
        flowBean.setUpFlow(upFlow);
        flowBean.setDownFlow(downFlow);
        flowBean.setUpCountFlow(upCountFlow);
        flowBean.setDownCountFlow(downCountFlow);

        //3:将K3和V3下入上下文中
        context.write(key, flowBean);
    }
}

  

Step 4: 程序main函数入口FlowMain

public class JobMain extends Configured implements Tool {
    @Override
    public int run(String[] strings) throws Exception {
        //1:创建一个job任务对象
        Job job = Job.getInstance(super.getConf(), "mapreduce_flowcount");
        //如果打包运行出错,则需要加该配置
        job.setJarByClass(JobMain.class);
        //2:配置job任务对象(八个步骤)

        //第一步:指定文件的读取方式和读取路径
        job.setInputFormatClass(TextInputFormat.class);
        //TextInputFormat.addInputPath(job, new Path("hdfs://node01:8020/wordcount"));
        TextInputFormat.addInputPath(job, new Path("file:///F:\\input\\flowcount_input"));



        //第二步:指定Map阶段的处理方式和数据类型
        job.setMapperClass(FlowCountMapper.class);
        //设置Map阶段K2的类型
        job.setMapOutputKeyClass(Text.class);
        //设置Map阶段V2的类型
        job.setMapOutputValueClass(FlowBean.class);


        //第三(分区),四 (排序)
        //第五步: 规约(Combiner)
        //第六步 分组


        //第七步:指定Reduce阶段的处理方式和数据类型
        job.setReducerClass(FlowCountReducer.class);
        //设置K3的类型
        job.setOutputKeyClass(Text.class);
        //设置V3的类型
        job.setOutputValueClass(FlowBean.class);

        //第八步: 设置输出类型
        job.setOutputFormatClass(TextOutputFormat.class);
        //设置输出的路径
        TextOutputFormat.setOutputPath(job, new Path("file:///F:\\out\\flowcount_out"));



        //等待任务结束
        boolean bl = job.waitForCompletion(true);

        return bl ? 0:1;
    }
    public static void main(String[] args) throws Exception {
        Configuration configuration = new Configuration();

        //启动job任务
        int run = ToolRunner.run(configuration, new JobMain(), args);
        System.exit(run);

    }
}

  

查看运行结果

原数据:

 

 运行结果

 

 

 

posted @ 2020-08-30 17:23  17_Xtreme  阅读(361)  评论(0编辑  收藏  举报