< a href="https://github.com/%E5%B0%8F%E7%9A%AE%E6%B5%A9"> Fork me on GitHub

numpy、pandas做数据清洗

<!doctype html>

numpy、pandas做数据清洗

numpy、pandas做数据清洗

numpy、pandas空值的清洗

有两种方式

  1. 删除空值所在的行数据
  2. 将缺失的行或者列进行删除

使用到的数据判断方法:

isnull:判断数据是否是为空,如果为空返回True,否则返回False

notnull:判断数据是否非空,如果为空返回False,否则返回True

any:与isnull组合判断

dropna:删除数据中的空的行数据或者列数据,axis参数表示与其他相反,行为0,列为1

fillna:对操作数据进行填充参数method='ffill'表示向前填充,'bfill'表示向后填充

方式一的实例:

方法一:

from pandas import DataFrame,Series
df = DataFrame(data = np.random.randint(0,100,size=(7,5)))
#创建一个7行5列的二维数组
#随机取值从0到100,形式是7行5列的数组
#设置是三个空值
df.iloc[3,4] = None   #三行四列的值为空
df.iloc[2,2] = np.nan  #设置2行2列的值为NAN
df.iloc[5,3] = None    #设置5行3列的值为空
df   #panads会自动将None的空值转换成NaN
#清洗空值的两种方式
#方式一删除空所在的行数据
 #isnull、notnull、any、all
df.isnull()   #用于判断数组内的数据是否为空,如果为空放回True,否则返回False
df.isnull().all(axis=1)   #1表示行,0表示列     只有在drop中于此相反
#all是行或列中如果出现False就返回False,只有都是True才返回True
#any是行或者列中如果有一个为True,就返回True
df.isnull().any(axis=1)   #1是行,0是列
#将布尔值作为原数据的行索引:保留为True的行数据
df.loc[df.isnull().any(axis=1)]   #根据isnull()的判断将有空值的行数据保留
drop_index = df.loc[df.isnull().any(axis=1)].index  #提取出存在空值的行索引
df.drop(labels=drop_index,axis=0)  #删除所在的行

方法二:

df.notnull().all(axis=1)    #notnull是判断不为空的返回True,否则返回False
#找出所有有空的行数据
#将布尔值作为行索引
df.loc[df.notnull().all(axis=1)]
#根据notnull的判断进行过滤出不为空的行数据

方式二的实例:

#方式二:dropna:可以直接将缺失的行或者列进行删除
df.dropna(axis=0)   #在dropna中0表示行,1表示列

drop_duplications(keep=False)

删除重复的行数据

keep=first

保留第一行数据,删除其他行数据

keep=last

保留最后一行数据,删除其他重复数据

posted @ 2020-04-05 19:29  赌徒!  阅读(619)  评论(0编辑  收藏  举报