大意:一些人按照序号排队,有些人相互喜欢,必须在一定的距离之内,而有些人,则必须相距一定的距离。
思路:差分约束,注意还有s[i]-s[i-1]>=0这一题目隐含条件,如果有负环则输出-1,如果距离无限远则输出-2,否则d[n];
CODE:
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int SIZE = 10010;
const int INF = 0x3f3f3f3f;
int u[4*SIZE], w[4*SIZE], v[4*SIZE], next[4*SIZE];
int first[SIZE], d[SIZE];
int n, ML, MD,cnt;
int sum[SIZE];
void read_graph(int u1, int v1, int w1)
{
u[cnt] = u1, v[cnt] = v1, w[cnt] = w1;
next[cnt] = first[u[cnt]];
first[u[cnt]] = cnt++;
}
int spfa(int src)
{
bool ins[SIZE] = {0};
int stack[SIZE] = {0};
int top = 0;
for(int i = 0; i <= n; i++) d[i] = (i == src)? 0:INF;
stack[top++] = src;
while(top)
{
int x = stack[--top];
ins[x] = 0;
for(int e = first[x]; e!=-1; e = next[e]) if(d[v[e]] > d[x]+w[e])
{
d[v[e]] = d[x]+w[e];
if(!ins[v[e]])
{
ins[v[e]] = 1;
sum[v[e]]++;
if(sum[v[e]] > n)
{
return -1;
}
stack[top++] = v[e];
}
}
}
if(d[n] == INF) return -2;
else return d[n];
}
void init()
{
memset(first, -1, sizeof(first));
memset(sum, 0, sizeof(sum));
cnt = 0;
}
int main()
{
int u1, v1, w1;
int T;
scanf("%d", &T);
while(T--)
{
init();
scanf("%d%d%d", &n, &ML, &MD);
for(int i = 1; i <= ML; i++)
{
scanf("%d%d%d", &u1, &v1, &w1);
read_graph(u1, v1, w1);
}
for(int i = 1; i <= MD; i++)
{
scanf("%d%d%d", &u1, &v1, &w1);
read_graph(v1, u1, -w1);
}
for(int i = 1; i <= n; i++)
read_graph(i, i-1, 0);
int ans = spfa(1);
printf("%d\n", ans);
}
return 0;
}
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int SIZE = 10010;
const int INF = 0x3f3f3f3f;
int u[4*SIZE], w[4*SIZE], v[4*SIZE], next[4*SIZE];
int first[SIZE], d[SIZE];
int n, ML, MD,cnt;
int sum[SIZE];
void read_graph(int u1, int v1, int w1)
{
u[cnt] = u1, v[cnt] = v1, w[cnt] = w1;
next[cnt] = first[u[cnt]];
first[u[cnt]] = cnt++;
}
int spfa(int src)
{
bool ins[SIZE] = {0};
int stack[SIZE] = {0};
int top = 0;
for(int i = 0; i <= n; i++) d[i] = (i == src)? 0:INF;
stack[top++] = src;
while(top)
{
int x = stack[--top];
ins[x] = 0;
for(int e = first[x]; e!=-1; e = next[e]) if(d[v[e]] > d[x]+w[e])
{
d[v[e]] = d[x]+w[e];
if(!ins[v[e]])
{
ins[v[e]] = 1;
sum[v[e]]++;
if(sum[v[e]] > n)
{
return -1;
}
stack[top++] = v[e];
}
}
}
if(d[n] == INF) return -2;
else return d[n];
}
void init()
{
memset(first, -1, sizeof(first));
memset(sum, 0, sizeof(sum));
cnt = 0;
}
int main()
{
int u1, v1, w1;
int T;
scanf("%d", &T);
while(T--)
{
init();
scanf("%d%d%d", &n, &ML, &MD);
for(int i = 1; i <= ML; i++)
{
scanf("%d%d%d", &u1, &v1, &w1);
read_graph(u1, v1, w1);
}
for(int i = 1; i <= MD; i++)
{
scanf("%d%d%d", &u1, &v1, &w1);
read_graph(v1, u1, -w1);
}
for(int i = 1; i <= n; i++)
read_graph(i, i-1, 0);
int ans = spfa(1);
printf("%d\n", ans);
}
return 0;
}