导数与积分
导数
\[f'(x)=\frac{f(x+\Delta x)-f(x)}{\Delta x}
\]
有用的导数基本公式:
\[\begin{aligned}
f(x)=e^x&\implies f'(x)=e^x\\
f(x)=a&\implies f'(x)=0\\
f(x)=\ln a&\implies f'(x)=\frac{1}{x}\\
f(x)=ax^t&\implies f'(x)=atx^{t-1}\\
(f(x)+g(x))'&\implies f'(x)+g'(x)\\
(f(g(x)))'&\implies f'(g(x))\times g'(x)
\end{aligned}
\]
\[f(x)=\sum_{i=0}^n a_ix^i\implies f'(x)=\sum_{i=0}^{n-1}(i+1)a_{i+1}x^i
\]
积分
多项式 \(f(x)=\sum_{i=0}^na_ix^i\) 积分:
\[\sum_{i=1}^{n+1} \frac{a_{i-1}x^i}{i}
\]