hdu-2620 Ice Rain---数论(取模运算规律)

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=2620

题目大意:

给出n和k求:

解题思路:

kmodi=k-i*[k/i] ,所以=nk-(1*[k/1]+2*[k/2]+...+n*[k/n])

只需求(1*[k/1]+2*[k/2]+...+n*[k/n])

对于前sqrt(k)项,可以直接求解

对于后面的,可以枚举[k/i]取整得到的值来计算有多少个这样的值。

这样时间复杂度只有根号k

 

比如k = n = 25,需要求解(1*[k/1]+2*[k/2]+...+n*[k/n])

对于前5项,直接求解

6到25项的结果分别是:

i 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[k/i] 4 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

从6开始

[k/i] = 4 左区间:6  右区间为25 / 4 = 6

[k/i] = 3 左区间:7  右区间为25 / 3 = 8

[k/i] = 2 左区间:9  右区间为25 / 2 = 12

[k/i] = 1 左区间:13   右区间为25 / 1 = 25

可写出伪代码:

  i从sqrt(k)+1到k

    左区间 l = i;

    取整的值x为 k / l

    右区间为 r = k / x

    右区间取n和右区间的较小值

    取整的值x的个数:num = (r - l + 1) * (r + l) / 2    这是由于求的是(1*[k/1]+2*[k/2]+...+n*[k/n])前面还有系数需要相加

    tot += num * x

    i = r + 1

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 typedef long long ll;
 4 int main()
 5 {
 6     ll n, k;
 7     while(cin >> n >> k)
 8     {
 9         ll a = n * k;
10         if(n > k)n = k;
11         ll m = sqrt(k + 0.5);
12         ll tot = 0;
13         if(n > m)
14         {
15             for(ll i = 1; i <= m; i++)
16                 tot += k / i * i;
17             for(ll i = m + 1; i <= n; )//i就是左区间
18             {
19                 ll x = k / i;
20                 ll r = k / x;           //r是右区间
21                 if(r > n)r = n;
22                 tot += (r + i) * (r - i + 1) / 2 * x;
23                 i = r + 1;
24             }
25         }
26         else
27         {
28             for(ll i = 1; i <= n; i++)
29                 tot += k / i * i;
30         }
31         ll ans = a - tot;
32         cout<<ans<<endl;
33     }
34     return 0;
35 }

 

posted @ 2018-05-15 17:47  _努力努力再努力x  阅读(305)  评论(0编辑  收藏  举报