使用cuda查看GPU的硬件配置情况
查看显卡详细信息:
// save as test_cu_info.cu
#include "device_launch_parameters.h"
#include <iostream>
int main()
{
int deviceCount;
cudaGetDeviceCount(&deviceCount);
for(int i=0;i<deviceCount;i++)
{
cudaDeviceProp devProp;
cudaGetDeviceProperties(&devProp, i);
std::cout << "使用GPU device " << i << ": " << devProp.name << std::endl;
std::cout << "设备全局内存总量: " << devProp.totalGlobalMem / 1024 / 1024 << "MB" << std::endl;
std::cout << "SM的数量:" << devProp.multiProcessorCount << std::endl;
std::cout << "每个线程块的共享内存大小:" << devProp.sharedMemPerBlock / 1024.0 << " KB" << std::endl;
std::cout << "每个线程块的最大线程数:" << devProp.maxThreadsPerBlock << std::endl;
std::cout << "设备上一个线程块(Block)种可用的32位寄存器数量: " << devProp.regsPerBlock << std::endl;
std::cout << "每个EM的最大线程数:" << devProp.maxThreadsPerMultiProcessor << std::endl;
std::cout << "每个EM的最大线程束数:" << devProp.maxThreadsPerMultiProcessor / 32 << std::endl;
std::cout << "设备上多处理器的数量: " << devProp.multiProcessorCount << std::endl;
std::cout << "======================================================" << std::endl;
}
return 0;
}
使用nvcc编译:
nvcc test_cu_info.cu -o test_cu_info
运行:
./test_cu_info
参考自:CUDA个人入坟笔记
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)