数字图像处理之锐化处理
数字图像处理之锐化处理
by方阳
版权声明:本文为博主原创文章,转载请指明转载地址
http://www.cnblogs.com/fydeblog/p/6748411.html。
今天介绍图像的锐化处理
相关知识:拉普拉斯算子、sobel算子、锐化滤波
1.理论知识
拉普拉斯算子是一个是n维欧几里德空间中的一个二阶微分算子,它的定义如下:
在x方向上
在y方向上
合起来就是
拉普拉斯强调的是图像中灰度的突变,并不强调图像的灰度缓变(灰度缓变由一阶微分,也就是梯度,图像应用是sobel算子,具体下面介绍)
根据上边的表达式,可以确定拉普拉斯算子的模板
例如:
[ 0 1 0
1 -4 0
0 1 0]
这是以90度增量旋转的拉普拉斯算子,如果以45度增量旋转会是怎样的结果呢,结果如下:
[1 1 1
1 -8 1
1 1 1]
注:这里的旋转是绕算子的中心
然后说说sobel算子,它的定义是
那么怎样理解呢,这里插个链接,对sobel算子的推导、说明、应用和参考代码都有,个人觉得非常不错。
http://blog.csdn.net/tonyshengtan/article/details/43698711
2.本次内容
2.1任意选择一副灰度图像,使用拉普拉斯算子对图像进行锐化滤波,并和原图像叠加,实现对图像的增强。
2.2任意选择一副图像,使用 sobel 算子对图像进行锐化滤波,观察滤波效果。
2.3任意选择一副图像,构造一个中心系数为-24 的 5×5
的类似于拉普拉斯模板对图像进行锐化,与中心系数为-8 的 3×3 拉普拉斯算子的结果相比,是否能得到更加清晰的结果?
2.1 锐化之拉普拉斯算子
参考代码:
Laplace=[0 1 0;1 -4 1;0 1 0]; I=imread('cameraman.tif'); I1=fy_Sharpen_filter(I,Laplace,2); I2=I+I1; figure; subplot(1,3,1); imshow(I); title('原图'); subplot(1,3,2); imshow(I1); title('拉普拉斯锐化输出'); subplot(1,3,3); imshow(I2); title('与原图叠加');
fy_Sharpen_filter函数参考代码:
%image_in为输入图像,Operator是算子,image_out为输出图像 function image_out=fy_Sharpen_filter(image_in,Operator,dimension) [m,n]=size(image_in); [a,b]=size(Operator); if dimension==3 n=n/3;%由于我的灰度图像是185x194x3的,所以除了3,你们如果是PxQ的,就不要加了 end A=zeros(m+2*(a-1),n+2*(b-1));%构造矩阵 B=A;%用来存放均值后A的值 C=zeros(m,n);%存最后的输出结果 for i=a:m+a-1 for j=b:n+b-1 A(i,j)= image_in(i-a+1,j-b+1);%填充图像到A end end [L,T]=size(A); %以下是实现均值相关运算 for i=1:L-a+1 for j=1:T-b+1 for p=1:a for q=1:b B(i+(a-1)/2,j+(b-1)/2)=B(i+(a-1)/2,j+(b-1)/2)+A(p+i-1,q+j-1)*Operator(p,q); end end end end B=uint8(B/(a*b)); for x=a:m+a-1 for y=b:n+b-1 C(x-a+1,y-b+1)=B(x,y); end end image_out=uint8(C);
运行结果:
2.2 锐化之sobel算子
参考代码:
Sobel_x=[-1 -2 -1;0 0 0;1 2 1]; Sobel_y=[-1 0 1;-2 0 2;-1 0 1]; I3=imread('cameraman.tif'); I4=fy_Sharpen_filter(I3,Sobel_x,2); I5=fy_Sharpen_filter(I3,Sobel_y,2); figure; subplot(1,3,1); imshow(I3); title('原图'); subplot(1,3,2); imshow(I4); title('sobel水平锐化输出'); subplot(1,3,3); imshow(I5); title('sobel垂直锐化输出');
实验结果:
2.3 5x5与3x3
参考代码:
Laplace3x3=[ 1 1 1; 1 -8 1; 1 1 1]; Laplace5x5=[ 0 0 2 0 0; 0 4 0 4 0; 2 0 -24 0 2; 0 4 0 4 0; 0 0 2 0 0]; I6=imread('circuit.jpg'); I7=fy_Sharpen_filter(I6,Laplace3x3,3); I8=fy_Sharpen_filter(I6,Laplace5x5,3); figure; subplot(1,3,1); imshow(I6); title('原图'); subplot(1,3,2); imshow(I7); title('Laplace3x3'); subplot(1,3,3); imshow(I8); title('Laplace5x5');
运行结果:
3.结果分析
(1)由图一可看出,拉普拉斯算子可提取出了图像的边缘特征,与原图叠加后新的图形的边缘被增强了
(2)由图二可看出,sobel算子的横向锐化模板和纵向锐化模板得出结果不相同,横向锐化得出的图形也偏横向,纵向偏纵向;
(3)由图三可看出,laplace5X5的锐化结果明显比laplace3X3的结果更加清晰,原因一个是模板大小,另一个是模板的变化状态,laplace5X5比laplace3X3的模板大且变化幅度大,锐化出的特征也就越明显。
最后,才学疏浅,如有不当地方还请海涵,感谢指点!