嵌入式Linux中的LED驱动控制
在前面“嵌入式Linux中字符型驱动程序的基本框架”一文中,讨论了一个字符型驱动的基本框架,但没有实现具体的驱动任务。这里就以野火STM32MP157开发板为例,通过编写一个实际的驱动程序去控制开发板上三个LED的亮灭。
先来看一下LED部分的电路原理图,如下所示。
从上图中可以看到,三个RGB颜色的二极管采用共阳接法, 因此在给STM32MP157的PA13、PG2、PB5端口输出高电平时,三个发光管匀熄灭,输出低电平时,三个发光管匀点亮。
下面给出了完整的驱动程序代码,文件名为led.c。
#include <linux/init.h> #include <linux/module.h> #include <linux/cdev.h> #include <linux/fs.h> #include <linux/uaccess.h> #include <linux/io.h> //以下定义总线及寄存器的物理地址 #define AHB4_PERIPH_BASE (0x50000000) #define RCC_BASE (AHB4_PERIPH_BASE + 0x0000) #define RCC_MP_GPIOENA (RCC_BASE + 0xA28) #define GPIOA_BASE (AHB4_PERIPH_BASE + 0x2000) #define GPIOA_MODER (GPIOA_BASE + 0x0000) #define GPIOA_OTYPER (GPIOA_BASE + 0x0004) #define GPIOA_OSPEEDR (GPIOA_BASE + 0x0008) #define GPIOA_PUPDR (GPIOA_BASE + 0x000C) #define GPIOA_ODR (GPIOA_BASE + 0x0014) #define GPIOA_BSRR (GPIOA_BASE + 0x0018) #define GPIOG_BASE (AHB4_PERIPH_BASE + 0x8000) #define GPIOG_MODER (GPIOG_BASE + 0x0000) #define GPIOG_OTYPER (GPIOG_BASE + 0x0004) #define GPIOG_OSPEEDR (GPIOG_BASE + 0x0008) #define GPIOG_PUPDR (GPIOG_BASE + 0x000C) #define GPIOG_ODR (GPIOG_BASE + 0x0014) #define GPIOG_BSRR (GPIOG_BASE + 0x0018) #define GPIOB_BASE (AHB4_PERIPH_BASE + 0x3000) #define GPIOB_MODER (GPIOB_BASE + 0x0000) #define GPIOB_OTYPER (GPIOB_BASE + 0x0004) #define GPIOB_OSPEEDR (GPIOB_BASE + 0x0008) #define GPIOB_PUPDR (GPIOB_BASE + 0x000C) #define GPIOB_ODR (GPIOB_BASE + 0x0014) #define GPIOB_BSRR (GPIOB_BASE + 0x0018) //以下定义时钟控制寄存器名称 volatile void __iomem *RCC_MP_AHB4ENSETR; volatile void __iomem *GPIO_MODER_PA; volatile void __iomem *GPIO_OTYPER_PA; volatile void __iomem *GPIO_OSPEEDR_PA; volatile void __iomem *GPIO_PUPDR_PA; volatile void __iomem *GPIO_ODR_PA; volatile void __iomem *GPIO_BSRR_PA; volatile void __iomem *GPIO_MODER_PB; volatile void __iomem *GPIO_OTYPER_PB; volatile void __iomem *GPIO_OSPEEDR_PB; volatile void __iomem *GPIO_PUPDR_PB; volatile void __iomem *GPIO_ODR_PB; volatile void __iomem *GPIO_BSRR_PB; volatile void __iomem *GPIO_MODER_PG; volatile void __iomem *GPIO_OTYPER_PG; volatile void __iomem *GPIO_OSPEEDR_PG; volatile void __iomem *GPIO_PUPDR_PG; volatile void __iomem *GPIO_ODR_PG; volatile void __iomem *GPIO_BSRR_PG; //声明一个字符型设备结构体led_dev struct led_dev { dev_t devid; //设备号 struct cdev chrdev; //字符设备结构体 struct class *class; //类结构体 struct device *device; //设备结构体 }; //定义一个led_dev类型的结构体,名称为led struct led_dev led; //实现open函数,为file_oprations结构体成员函数 static int led_open(struct inode *inode, struct file *filp) { unsigned int tmp; //以下使能GPIOA、GPIOB、GPIOG端口时钟 tmp = ioread32(RCC_MP_AHB4ENSETR); tmp |= (0x1 << 6) | (0x1 << 1) | (0x1 << 0); iowrite32(tmp, RCC_MP_AHB4ENSETR); //把led结构体保存在file结构体的私有变量中 filp->private_data = &led; return 0; } //实现write函数,为file_oprations结构体成员函数 static ssize_t led_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt) { unsigned char value; unsigned long n; n = copy_from_user(&value, buf, cnt); //从应用空间获取值 switch(value) //根据应用空间的值判断具体操作 { case 0: //全部点亮三个LED iowrite32(0x20000000, GPIO_BSRR_PA); iowrite32(0x200000, GPIO_BSRR_PB); iowrite32(0x40000, GPIO_BSRR_PG); break; case 1: //点亮红色LED iowrite32(0x20000000, GPIO_BSRR_PA); break; case 2: //点亮绿色LED iowrite32(0x40000, GPIO_BSRR_PG); break; case 3: //点亮蓝色LED iowrite32(0x200000, GPIO_BSRR_PB); break; case 4: //熄灭红色LED iowrite32(0x2000, GPIO_BSRR_PA); break; case 5: //熄灭绿色LED iowrite32(0x04, GPIO_BSRR_PG); break; case 6: //熄灭蓝色LED iowrite32(0x20, GPIO_BSRR_PB); break; case 7: //全部熄灭三个LED iowrite32(0x2000, GPIO_BSRR_PA); iowrite32(0x20, GPIO_BSRR_PB); iowrite32(0x04, GPIO_BSRR_PG); break; default: //全部熄灭 iowrite32(0x2000, GPIO_BSRR_PA); iowrite32(0x20, GPIO_BSRR_PB); iowrite32(0x04, GPIO_BSRR_PG); break; } return cnt; } //实现release函数,为file_oprations结构体函数 static int led_release(struct inode *inode, struct file *filp) { unsigned int tmp; //以下禁能GPIOA、GPIOB、GPIOG端口时钟 tmp = ioread32(RCC_MP_AHB4ENSETR); tmp &= ~0x43; iowrite32(tmp, RCC_MP_AHB4ENSETR); return 0; } //填充一个file_oprations类型的结构体,名为led_dev_fops,包含上述声明的成员函数 static struct file_operations led_dev_fops = { .owner = THIS_MODULE, .open = led_open, //指定open函数成员 .write = led_write, //指定write函数成员 .release = led_release, //指定release函数成员 }; //初始化函数,此处为驱动模块的入口函数 static int __init led_init(void) { unsigned int tmp; //以下实现各个寄存器的地址映射 RCC_MP_AHB4ENSETR = ioremap(RCC_MP_GPIOENA, 4); GPIO_MODER_PA = ioremap(GPIOA_MODER, 4); GPIO_OTYPER_PA = ioremap(GPIOA_OTYPER, 4); GPIO_OSPEEDR_PA = ioremap(GPIOA_OSPEEDR, 4); GPIO_PUPDR_PA = ioremap(GPIOA_PUPDR, 4); GPIO_ODR_PA = ioremap(GPIOA_ODR, 4); GPIO_BSRR_PA = ioremap(GPIOA_BSRR, 4); GPIO_MODER_PB = ioremap(GPIOB_MODER, 4); GPIO_OTYPER_PB = ioremap(GPIOB_OTYPER, 4); GPIO_OSPEEDR_PB = ioremap(GPIOB_OSPEEDR, 4); GPIO_PUPDR_PB = ioremap(GPIOB_PUPDR, 4); GPIO_ODR_PB = ioremap(GPIOB_ODR, 4); GPIO_BSRR_PB = ioremap(GPIOB_BSRR, 4); GPIO_MODER_PG = ioremap(GPIOG_MODER, 4); GPIO_OTYPER_PG = ioremap(GPIOG_OTYPER, 4); GPIO_OSPEEDR_PG = ioremap(GPIOG_OSPEEDR, 4); GPIO_PUPDR_PG = ioremap(GPIOG_PUPDR, 4); GPIO_ODR_PG = ioremap(GPIOG_ODR, 4); GPIO_BSRR_PG = ioremap(GPIOG_BSRR, 4); //以下使能GPIOA、GPIOB、GPIOG端口时钟 tmp = ioread32(RCC_MP_AHB4ENSETR); tmp |= (0x1 << 6) | (0x1 << 1) | (0x1 << 0); iowrite32(tmp, RCC_MP_AHB4ENSETR); //以下把GPIOA、GPIOB、GPIOG端口配置为输出、上位模式 tmp = ioread32(GPIO_MODER_PA); tmp &= ~(0x3 << 26); tmp |= (0x1 << 26); iowrite32(tmp, GPIO_MODER_PA); tmp = ioread32(GPIO_MODER_PB); tmp &= ~(0x3 << 10); tmp |= (0x1 << 10); iowrite32(tmp, GPIO_MODER_PB); tmp = ioread32(GPIO_MODER_PG); tmp &= ~(0x3 << 4); tmp |= (0x1 << 4); iowrite32(tmp, GPIO_MODER_PG); tmp = ioread32(GPIO_PUPDR_PA); tmp &= ~(0x3 << 26); tmp |= (0x1 << 26); iowrite32(tmp, GPIO_PUPDR_PA); tmp = ioread32(GPIO_PUPDR_PB); tmp &= ~(0x3 << 10); tmp |= (0x1 << 10); iowrite32(tmp, GPIO_PUPDR_PB); tmp = ioread32(GPIO_PUPDR_PG); tmp &= ~(0x3 << 4); tmp |= (0x1 << 4); iowrite32(tmp, GPIO_PUPDR_PG); //以下设定GPIOA、GPIOB、GPIOG端口初始值 iowrite32(0x2000, GPIO_BSRR_PA); iowrite32(0x20, GPIO_BSRR_PB); iowrite32(0x04, GPIO_BSRR_PG); //以下禁能GPIOA、GPIOB、GPIOG端口时钟 tmp = ioread32(RCC_MP_AHB4ENSETR); tmp &= ~0x43; iowrite32(tmp, RCC_MP_AHB4ENSETR); //申请主设备号 if(alloc_chrdev_region(&led.devid, 0, 1, "led") < 0) { printk("Couldn't alloc_chrdev_region!\r\n"); return -EFAULT; } led.chrdev.owner = THIS_MODULE; //绑定前面声明的file_oprations类型的结构体到字符设备 cdev_init(&led.chrdev, &led_dev_fops); //填充上面申请到的主设备号到字符设备 if(cdev_add(&led.chrdev,led.devid, 1) < 0) { printk("Couldn't add chrdev!\r\n"); return -EFAULT; } //创建类 led.class = class_create(THIS_MODULE, "led_dev"); //根据创建的类生成一个设备节点 led.device = device_create(led.class, NULL, led.devid, NULL, "led"); return 0; } //退出函数,此处为驱动模块的出口函数 static void __exit led_exit(void) { //以下实现各个寄存器的解除映射 iounmap(RCC_MP_AHB4ENSETR); iounmap(GPIO_MODER_PA); iounmap(GPIO_OTYPER_PA); iounmap(GPIO_OSPEEDR_PA); iounmap(GPIO_PUPDR_PA); iounmap(GPIO_ODR_PA); iounmap(GPIO_BSRR_PA); iounmap(GPIO_MODER_PB); iounmap(GPIO_OTYPER_PB); iounmap(GPIO_OSPEEDR_PB); iounmap(GPIO_PUPDR_PB); iounmap(GPIO_ODR_PB); iounmap(GPIO_BSRR_PB); iounmap(GPIO_MODER_PG); iounmap(GPIO_OTYPER_PG); iounmap(GPIO_OSPEEDR_PG); iounmap(GPIO_PUPDR_PG); iounmap(GPIO_ODR_PG); iounmap(GPIO_BSRR_PG); //删除字符设备 cdev_del(&led.chrdev); //释放主设备号 unregister_chrdev_region(led.devid, 1); //销毁设备节点 device_destroy(led.class, led.devid); //销毁类 class_destroy(led.class); } module_init(led_init); //模块入口声明 module_exit(led_exit); //模块出口声明 MODULE_LICENSE("GPL"); //GPL协议声明
以上程序在操作端口电平时使用了BSRR寄存器,如果要操作ODR寄存器,则上述代码中的led_write函数可换成如下的形式即可。
static ssize_t led_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt) { unsigned char value; unsigned int tmp; unsigned long n; n = copy_from_user(&value, buf, cnt); //从应用空间获取值 switch(value) //根据应用空间的值判断具体操作 { case 0: //全部点亮三个LED tmp = ioread32(GPIO_ODR_PA); tmp &= ~0x2000; iowrite32(tmp, GPIO_ODR_PA); tmp = ioread32(GPIO_ODR_PB); tmp &= ~0x20; iowrite32(tmp, GPIO_ODR_PB); tmp = ioread32(GPIO_ODR_PG); tmp &= ~0x04; iowrite32(tmp, GPIO_ODR_PG); break; case 1: //点亮红色LED tmp = ioread32(GPIO_ODR_PA); tmp &= ~0x2000; iowrite32(tmp, GPIO_ODR_PA); break; case 2: //点亮绿色LED tmp = ioread32(GPIO_ODR_PG); tmp &= ~0x04; iowrite32(tmp, GPIO_ODR_PG); break; case 3: //点亮蓝色LED tmp = ioread32(GPIO_ODR_PB); tmp &= ~0x20; iowrite32(tmp, GPIO_ODR_PB); break; case 4: //熄灭红色LED tmp = ioread32(GPIO_ODR_PA); tmp |= 0x2000; iowrite32(tmp, GPIO_ODR_PA); break; case 5: //熄灭绿色LED tmp = ioread32(GPIO_ODR_PG); tmp |= 0x04; iowrite32(tmp, GPIO_ODR_PG); break; case 6: //熄灭蓝色LED tmp = ioread32(GPIO_ODR_PB); tmp |= 0x20; iowrite32(tmp, GPIO_ODR_PB); break; case 7: //全部熄灭三个LED tmp = ioread32(GPIO_ODR_PA); tmp |= 0x2000; iowrite32(tmp, GPIO_ODR_PA); tmp = ioread32(GPIO_ODR_PB); tmp |= 0x20; iowrite32(tmp, GPIO_ODR_PB); tmp = ioread32(GPIO_ODR_PG); tmp |= 0x04; iowrite32(tmp, GPIO_ODR_PG); break; default: //全部熄灭 tmp = ioread32(GPIO_ODR_PA); tmp |= 0x2000; iowrite32(tmp, GPIO_ODR_PA); tmp = ioread32(GPIO_ODR_PB); tmp |= 0x20; iowrite32(tmp, GPIO_ODR_PB); tmp = ioread32(GPIO_ODR_PG); tmp |= 0x04; iowrite32(tmp, GPIO_ODR_PG); break; } return 0; }
驱动程序属于内核态程序,所以还需要配套一个Makefile文件,其内容如下。
KERNEL_DIR=/opt/ebf_linux_kernel_mp157_depth1/build_image/build ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- export ARCH CROSS_COMPILE obj-m := led.o all: $(MAKE) -C $(KERNEL_DIR) M=$(CURDIR) modules clean: $(MAKE) -C $(KERNEL_DIR) M=$(CURDIR) clean
上述Makefile文件中的第一行指定了开发板的内核源代码位置,若放到了其他路径可自行修改。另外,该内容在复制粘贴后,需要修改命令两行(倒数第1、3行)前面的空余部分,修改为Tab键开头。
以下是测试用的应用程序代码,文件名为app.c。
#include <stdio.h> #include <fcntl.h> #include <string.h> #include <unistd.h> int main(int argc, char *argv[]) { int fd; unsigned char val = 0; fd = open("/dev/led", O_RDWR); //打开设备节点 if( fd < 0 ) printf("can`t open\n"); if( argc != 3 ) //命令参数不对时提示 { printf("Usage :\n"); printf("%s <all|red|green|blue> <on|off>\n", argv[0]); return 0; } if(strcmp(argv[1], "all") == 0) { if(strcmp(argv[2], "on") == 0) val = 0; //值为0时全部点亮 else val = 7; //值为7时全部熄灭 } else if(strcmp(argv[1], "red") == 0) { if(strcmp(argv[2], "on") == 0) val = 1; //值为1时红色点亮 else val = 4; //值为4时红色熄灭 } else if(strcmp(argv[1], "green") == 0) { if(strcmp(argv[2], "on") == 0) val = 2; //值为2时绿色点亮 else val = 5; //值为5时绿色熄灭 } else if(strcmp(argv[1], "blue") == 0) { if(strcmp(argv[2], "on") == 0) val = 3; //值为3时蓝色点亮 else val = 6; //值为6时蓝色熄灭 } write(fd, &val, 1); //把值写入设备节点 close(fd); //关闭设备节点 return 0; }
完成后,先执行make命令编译驱动程序,若成功会生成名为led.ko的驱动模块文件。然后对应用程序进行交叉编译,执行“arm-linux-gnueabihf-gcc app.c -o app”即可。
完成后,把编译生成的驱动模块文件led.ko和应用程序文件app一起拷贝到NFS共享目录下 。然后在开发板上执行“insmod led.ko”,把模块插入到内核中,可执行lsmod命令查看一下是否加载成功,并查看一下/dev目录是否已经生成了设备节点文件led。此外,还可以执行“cat /proc/devices”查看一下led设备的主设备号。
以上都正常后,就可以执行应用程序来进行测试了。输入“./app all on”并回车,可看到开发板上三个LED全部点亮,如下图所示。
再输入“./app all off”并回车,可看到它们又全部熄灭,如下图所示。
还可以执行其他命令,来点亮或熄灭单独的LED,比如,单独点亮红色的LED,可执行命“./app red on”,熄灭执行命令“./app red off”等等,以此类推进行检查验证。
--待续--