2.30
1 我的日程安排表 I
https://leetcode-cn.com/problems/my-calendar-i/
思路:
插入每个区间的时候,只需要看两点
(1)start的上一个区间的结尾是否超过了start
(2)start的下一个区间的开头是否被end超过
java 和c++代码
class MyCalendar { private TreeMap<Integer,Integer> tree ; public MyCalendar() { this.tree = new TreeMap<>(); } public boolean book(int start, int end) { if(start>=end) return false; //时间不合法 Integer floorKey = tree.floorKey(start);//找到小于等于start的最大键 Integer ceilingKey = tree.ceilingKey(start);//找到大于start的最小键 if(floorKey!=null&&tree.get(floorKey)>start) return false; if(ceilingKey!=null&&ceilingKey<end) return false; tree.put(start,end); return true; } }
typedef pair<int, int> PII; const int INF = 2e9; class MyCalendar { public: set<PII> S; MyCalendar() { S.insert({-INF, -INF}); S.insert({INF, INF}); } bool check(PII a, PII b) { if (a.second <= b.first || b.second <= a.first) return false; return true; } bool book(int start, int end) { auto i = S.lower_bound({start, -INF}); auto j = i; j -- ; PII t(start, end); if (check(*i, t) || check(*j, t)) return false; S.insert(t); return true; } };
2 统计不同回文子序列
思路:参考acwing王子辰https://www.acwing.com/solution/content/4105/
java和c++代码
class Solution { public int countPalindromicSubsequences(String S) { int n = S.length(); int mod = (int)1e9+7; int[][] dp = new int[n+5][n+5]; for (int[] d : dp) { Arrays.fill(d, 1); } for(int i=1;i<=n;i++) dp[i][i] = 2; for(int len=2;len<=n;len++){ Deque<Integer>[] queue = new Deque[4]; for(int i=0;i<4;i++) queue[i] = new LinkedList<>(); for(int i=1;i<=n;i++){ queue[S.charAt(i-1)-'a'].add(i); //将当前位置加入队列 int j = i-len+1; if(j>=1){ for(int k=0;k<4;k++){ while (queue[k].size()>0&&queue[k].peekFirst()<j) queue[k].pollFirst(); if(queue[k].size()>0){ dp[j][i] ++; int l = queue[k].peekFirst(); int r = queue[k].peekLast(); if(l<r) dp[j][i] = (dp[j][i]+dp[l+1][r-1])%mod; } } } } } return (dp[1][n]+mod-1)%mod; } }
class Solution { public: int countPalindromicSubsequences(string s) { int n = s.size(), MOD = 1e9 + 7; vector<vector<int>> f(n + 2, vector<int>(n + 2, 1)); for (int i = 1; i <= n; i ++ ) f[i][i] ++ ; for (int len = 2; len <= n; len ++ ) { deque<int> q[4]; for (int i = 1; i <= n; i ++ ) { q[s[i - 1] - 'a'].push_back(i); int j = i - len + 1; if (j >= 1) { for (int k = 0; k < 4; k ++ ) { while (q[k].size() && q[k].front() < j) q[k].pop_front(); if (q[k].size()) { f[j][i] ++ ; int l = q[k].front(), r = q[k].back(); if (l < r) f[j][i] = (f[j][i] + f[l + 1][r - 1]) % MOD; } } } } } return (f[1][n] + MOD - 1) % MOD; } };