【0812 | Day 13】闭包函数/装饰器/迭代器
闭包函数
一、什么是闭包?
闭包指的是:函数内部函数对外部作用域而非全局作用域的引用。
def outter():
x = 1
def inner():
print(x)
return inner
f = outter()
def f2():
x = 2
f()
f2()
# 1
1.1 两种为函数传参的方式
为函数传参的方式一:使用参数的形式
def func(x):
print(x)
func(1)
func(1)
func(1)
# 1
# 1
# 1
为函数传参的方式二:包给函数
def outter(x):
x = 1
def inner():
print(x)
return inner
f = outter(1)
f()
f()
f()
# 查看闭包的元素
print(F"f.__closure__[0].cell_contents: {f.__closure__[0].cell_contents}")
# 1
# 1
# 1
# f.__closure__[0].cell_contents: 1
举个栗子
def f2(x):
def f1():
print(x)
return f1
f1_1 = f2(1) #返回f1 + 1
f1_1() #调用f1,传参x = 1
# 1
二、闭包函数的应用
闭包的意义:返回的函数对象,不仅仅是一个函数对象,在该函数外还包裹了一层作用域,这使得,该函数无论在何处调用,优先使用自己外层包裹的作用域。
应用一(复杂):
import requests
def get(url):
res = requests.get(url)
print(res)
get('https://www.baidu.com')
get('https://www.baidu.com')
get('https://www.baidu.com')
get('https://www.cnblogs.com/linhaifeng')
get('https://www.cnblogs.com/linhaifeng')
get('https://www.cnblogs.com/linhaifeng')
#https://www.baidu.com
#https://www.baidu.com
#https://www.baidu.com
#https://www.cnblogs.com/linhaifeng
#https://www.cnblogs.com/linhaifeng
#https://www.cnblogs.com/linhaifeng
应用二(闭包):
#爬取
import requests
def func(url):
def get():
res = requests.get(url)
print(res.text)
return get
baidu_spider = func('http://www.iqiyi.com/')
baidu_spider()
无参装饰器
装饰器指的是为被装饰器对象添加额外功能,就是定义一个函数,只不过该函数的功能是用来为其他函数添加额外的功能。
一、装饰器使用原则
装饰器的实现必须遵循两大原则:
- 不修改被装饰对象的源代码
- 不修改被装饰对象的调用方式
二、怎么用装饰器?
改变源代码(index内部代码块被改变):
import time
def index():
start = time.time()
print('welcome to index')
time.sleep(1)
end = time.time()
print(F"index run time is {start-end}")
index()
#welcome to index
#index run time is -1.0008180141448975
编写重复代码(index( )和f2( )都调用,而且time代码重复):
import time
def index():
print('welcome to index')
time.sleep(1)
def f2():
print('welcome to index')
time.sleep(1)
start = time.time()
index()
end = time.time()
print(F"index run time is {start-end}")
start = time.time()
f2()
end = time.time()
print(F"f2 run time is {start-end}")
#welcome to index
#index run time is -1.0046868324279785
#welcome to index
#f2 run time is -1.000690221786499
三、两种传参方式
第一种传参方式:改变调用方式
import time
def index():
print('welcome to index')
time.sleep(1)
def time_count(func):
start = time.time()
func() #func()=index(),打印'welcome to index'
end = time.time()
print(f"{func} time is {start-end}") #打印
time_count(index) #运行time_count(),同时传参给func
#welcome to index
#<function index at 0x102977378> time is -1.000748872756958
第二种传参方式:包给函数-外包
import time
def index():
print('welcome to index')
time.sleep(1)
def time_count(func):
# func = 最原始的index
def wrapper():
start = time.time()
func()
end = time.time()
print(f"{func} time is {start-end}")
return wrapper
# f = time_count(index)
# f()
index = time_count(index) # index被重新定义,原来的index被覆盖,即index = wrapper,func = index
index() # wrapper()
#依旧是以index()方式调用
#welcome to index
#<function index at 0x102977730> time is -1.0038220882415771
四、完善装饰器
上述的装饰器,最后调用index()的时候,其实是在调用wrapper(),因此如果原始的index()有返回值的时候,wrapper()函数的返回值应该和index()的返回值相同,也就是说,我们需要同步原始的index()和wrapper()方法的返回值。
import time
def index():
print('welcome to index')
time.sleep(1)
return 123
def time_count(func):
# func = 最原始的index
def wrapper():
start = time.time()
res = func()
end = time.time()
print(f"{func} time is {start-end}")
return res
return wrapper
index = time_count(index) #index = wapper, func = index
res = index() #wapper(index)
print(f"res: {res}")
#welcome to index
#<function index at 0x102977620> time is -1.0050289630889893
#res: 123
如果原始的index()方法需要传参,那么我们之前的装饰器是无法实现该功能的,由于有wrapper()=index(),所以给wrapper()方法传参即可。
import time
def index():
print('welcome to index')
time.sleep(1)
return 123
def home(name):
print(f"welcome {name} to home page")
time.sleep(1)
return name
def time_count(func):
# func = 最原始的index
def wrapper(*args, **kwargs):
start = time.time()
res = func(*args, **kwargs)
end = time.time()
print(f"{func} time is {start-end}")
return res
return wrapper
home = time_count(home) #func = home, home = wrapper
res = home('egon') #wrapper('egon') = fun('egon') = home('egon') = 'welcome egon to home page' = 'egon'
print(f"res: {res}") # res = func('egon') = home('egon') = 'egon'
#welcome egon to home page
#<function home at 0x102977378> time is -1.0039079189300537
#res: egon
五、装饰器语法糖
在被装饰函数正上方,并且是单独一行写上@装饰器名
import time
def time_count(func):
# func = 最原始的index
def wrapper(*args, **kwargs):
start = time.time()
res = func(*args, **kwargs)
end = time.time()
print(f"{func} time is {start-end}")
return res
return wrapper
@time_count # home = time_count(home)
def home(name):
print(f"welcome {name} to home page")
time.sleep(1)
return name
@time_count # index = time_count(index)
def index():
print('welcome to index')
time.sleep(1)
return 123
res = home('egon') #func = home name = 'egon' --> welcome egon to home page --> print(f"{func} time is {start-end}")
print(f"res: {res}") # egon
#welcome egon to home page
#<function home at 0x102977620> time is -1.0005171298980713
#res: egon
六、装饰器模板(重要)
def deco(func):
def wrapper(*args,**kwargs):
res = func(*args,**kwargs)
return res
return wrapper
有参装饰器
无参装饰器套了两层,有参装饰器套了三层。
import time
current_user = {'username': None}
def login(func):
# func = 最原始的index
def wrapper(*args, **kwargs):
if current_user['username']:
res = func(*args, **kwargs)
return res
user = input('username: ').strip()
pwd = input('password: ').strip()
if user == 'nick' and pwd == '123':
print('login successful')
current_uesr['usre'] = user
res = func(*args, **kwargs)
return res
else:
print('user or password error')
return wrapper
@login #home = login(home)
def home(name):
print(f"welcome {name} to home page")
time.sleep(1)
return name
@login #index = login(index)
def index():
print('welcome to index')
time.sleep(1)
return 123
res = index() #运行index之前运行糖果 wrapper(index) 继续运行 返回res = func 继续运行 即真正的index()
#username: nick
#password: 123
#login successful
#welcome to index
对于上面的登录注册,我们把用户登录成功的信息写入内存当中。但是在工业上,用户信息可以存在文本中、mysql中、mongodb当中,但是我们只让用户信息来自于file
的用户可以认证。因此我们可以改写上述的装饰器。
import time
current_user = {'username': None}
def login(func):
# func = 最原始的index
def wrapper(*args, **kwargs):
if current_user['username']:
res = func(*args, **kwargs)
return res
user = input('username: ').strip()
pwd = input('password: ').strip()
engine = 'file'
if engine == 'file':
print('base of file')
if user == 'nick' and pwd == '123':
print('login successful')
current_uesr['usre'] = user
res = func(*args, **kwargs)
return res
else:
print('user or password error')
elif engine == 'mysql':
print('base of mysql')
elif engine == 'mongodb':
print('base of mongodb')
else:
print('default')
return wrapper
@login
def home(name):
print(f"welcome {name} to home page")
time.sleep(1)
@login
def index():
print('welcome to index')
time.sleep(1)
res = index()
#username: nick
#password: 123
#base of file
#login successful
#welcome to index
一、三层闭包
def f1(y):
def f2():
x = 1
def f3():
print(f"x: {x}")
print(f"y: {y}")
return f3
return f2
f2 = f1(2) #f2(y = 2)
f3 = f2() #x = 1
f3() #到外部找x, y
#倒着运行--->先找x, y--->找到x = 1--->y = 2--->结果输出
#x: 1
#y: 2
现在需求改了,我们需要判断用户动态的获取用户密码的方式,如果是file
类型的,我们则让用户进行认证。因此我们可以使用有参装饰器。
import time
current_uesr = {'username': None}
def auth(engine='file'):
def login(func):
# func = 最原始的index
def wrapper(*args, **kwargs):
if current_user['username']:
res = func(*args, **kwargs)
return res
user = input('username: ').strip()
pwd = input('password: ').strip()
if engine == 'file':
print('base of file')
if user == 'nick' and pwd == '123':
print('login successful')
current_uesr['usre'] = user
res = func(*args, **kwargs)
return res
else:
print('user or password error')
elif engine == 'mysql':
print('base of mysql, please base of file')
elif engine == 'mongodb':
print('base of mongodb, please base of file')
else:
print('please base of file')
return wrapper
return login
@auth(engine='mysql')
def home(name):
print(f"welcome {name} to home page")
time.sleep(1)
@auth(engine='file')
def index():
print('welcome to index')
time.sleep(1)
res = index()
#username: nick
#password: 123
#base of file
#login successful
#welcome to index
注意:由于两层的装饰器,参数必须得固定位func
,但是三层的装饰器解除了这个限制。我们不仅仅可以使用上述单个参数的三层装饰器,多个参数的只需要在三层装饰器中多加入几个参数即可。也就是说装饰器三层即可,多加一层反倒无用。
迭代器
迭代器:迭代的工具。
迭代是更新换代,比如你子孙繁衍;迭代也可以说成是重复,但每一次的重复都是基于上一次的结果来的,例如计算机中的迭代开发,就是基于软件的上一个版本更新。
以下代码就不是迭代,它只是单纯的重复
while True:
print('*'*10)
一、可迭代对象
定义:具有__iter__
方法的对象就是可迭代对象,除了数字类型和函数类型。
注意:tuple(1)与tuple(1,)类型有区别
# x = 1.__iter__ # SyntaxError: invalid syntax
# 以下都是可迭代的对象
name = 'nick'.__iter__
lis = [1, 2].__iter__
tup = (1, 2).__iter__
dic = {'name': 'nick'}.__iter__
s1 = {'a', 'b'}.__iter__
f = open('49w.txt', 'w', encoding='utf-8')
f.__iter__
f.close()
二、迭代器对象
只有字符串和列表都是依赖索引取值的,而其他的可迭代对象都是无法依赖索引取值的。因此我们得找到一个方法能让其他的可迭代对象不依赖索引取值。
定义:具有__iter__
和__next__
方法的都是迭代器对象,只有文件。
缺点:
- 取值麻烦,只能一个一个取,并且只能往后取,值取了就没了
- 无法使用len()方法获取长度
# 不依赖索引的数据类型迭代取值
dic = {'a': 1, 'b': 2, 'c': 3}
iter_dic = dic.__iter__()
print(iter_dic.__next__())
print(iter_dic.__next__())
print(iter_dic.__next__())
# print(iter_dic.__next__()) # StopIteration:
#a
#b
#c
# 依赖索引的数据类型迭代取值
lis = [1, 2, 3]
iter_lis = lis.__iter__()
print(iter_lis.__next__())
print(iter_lis.__next__())
print(iter_lis.__next__())
# print(iter_lis.__next__()) # StopIteration:
#1
#2
#3
上述的方法是非常繁琐的,我们可以使用while循环精简下。其中使用的try...except...
为异常处理模块
#for循环原理
lt = [1,2,3]
lt_iter = lt.__iter__()
while 1:
try:
print(lt_iter.__next__())
except StopIteration:
break
注意一:迭代器对象一定是可迭代对象,可迭代对象不一定是迭代器对象
注意二:for循环 == 迭代循环
注意三:迭代器对象使用__iter__()还是迭代器对象