Flink - ShipStrategyType

 

对于DataStream,可以选择如下的Strategy,

/**
     * Sets the partitioning of the {@link DataStream} so that the output elements
     * are broadcasted to every parallel instance of the next operation.
     *
     * @return The DataStream with broadcast partitioning set.
     */
    public DataStream<T> broadcast() {
        return setConnectionType(new BroadcastPartitioner<T>());
    }

    /**
     * Sets the partitioning of the {@link DataStream} so that the output elements
     * are shuffled uniformly randomly to the next operation.
     *
     * @return The DataStream with shuffle partitioning set.
     */
    @PublicEvolving
    public DataStream<T> shuffle() {
        return setConnectionType(new ShufflePartitioner<T>());
    }

    /**
     * Sets the partitioning of the {@link DataStream} so that the output elements
     * are forwarded to the local subtask of the next operation.
     *
     * @return The DataStream with forward partitioning set.
     */
    public DataStream<T> forward() {
        return setConnectionType(new ForwardPartitioner<T>());
    }

    /**
     * Sets the partitioning of the {@link DataStream} so that the output elements
     * are distributed evenly to instances of the next operation in a round-robin
     * fashion.
     *
     * @return The DataStream with rebalance partitioning set.
     */
    public DataStream<T> rebalance() {
        return setConnectionType(new RebalancePartitioner<T>());
    }

    /**
     * Sets the partitioning of the {@link DataStream} so that the output elements
     * are distributed evenly to a subset of instances of the next operation in a round-robin
     * fashion.
     *
     * <p>The subset of downstream operations to which the upstream operation sends
     * elements depends on the degree of parallelism of both the upstream and downstream operation.
     * For example, if the upstream operation has parallelism 2 and the downstream operation
     * has parallelism 4, then one upstream operation would distribute elements to two
     * downstream operations while the other upstream operation would distribute to the other
     * two downstream operations. If, on the other hand, the downstream operation has parallelism
     * 2 while the upstream operation has parallelism 4 then two upstream operations will
     * distribute to one downstream operation while the other two upstream operations will
     * distribute to the other downstream operations.
     *
     * <p>In cases where the different parallelisms are not multiples of each other one or several
     * downstream operations will have a differing number of inputs from upstream operations.
     *
     * @return The DataStream with rescale partitioning set.
     */
    @PublicEvolving
    public DataStream<T> rescale() {
        return setConnectionType(new RescalePartitioner<T>());
    }

    /**
     * Sets the partitioning of the {@link DataStream} so that the output values
     * all go to the first instance of the next processing operator. Use this
     * setting with care since it might cause a serious performance bottleneck
     * in the application.
     *
     * @return The DataStream with shuffle partitioning set.
     */
    @PublicEvolving
    public DataStream<T> global() {
        return setConnectionType(new GlobalPartitioner<T>());
    }

 

逻辑都是由Partitoner来实现的,

BroadcastPartitioner

public class BroadcastPartitioner<T> extends StreamPartitioner<T> {
    private static final long serialVersionUID = 1L;

    int[] returnArray;
    boolean set;
    int setNumber;

    @Override
    public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
            int numberOfOutputChannels) {
        if (set && setNumber == numberOfOutputChannels) {
            return returnArray;
        } else {
            this.returnArray = new int[numberOfOutputChannels];
            for (int i = 0; i < numberOfOutputChannels; i++) {
                returnArray[i] = i;
            }
            set = true;
            setNumber = numberOfOutputChannels;
            return returnArray;
        }
    }

int[] returnArray, 数组,select的channel id

broadcast,要发到所有channel,所以returnArray要包含所有的channel id

 

ShufflePartitioner,随机选一个channel

public class ShufflePartitioner<T> extends StreamPartitioner<T> {
    private static final long serialVersionUID = 1L;

    private Random random = new Random();

    private int[] returnArray = new int[1];

    @Override
    public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
            int numberOfOutputChannels) {
        returnArray[0] = random.nextInt(numberOfOutputChannels);
        return returnArray;
    }

 

ForwardPartitioner,对于forward,应该只有一个输出channel,所以就选第一个channel就可以

public class ForwardPartitioner<T> extends StreamPartitioner<T> {
    private static final long serialVersionUID = 1L;

    private int[] returnArray = new int[] {0};

    @Override
    public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record, int numberOfOutputChannels) {
        return returnArray;
    }

 

RebalancePartitioner,就是roundrobin,循环选择

public class RebalancePartitioner<T> extends StreamPartitioner<T> {
    private static final long serialVersionUID = 1L;

    private int[] returnArray = new int[] {-1};

    @Override
    public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
            int numberOfOutputChannels) {
        this.returnArray[0] = (this.returnArray[0] + 1) % numberOfOutputChannels;
        return this.returnArray;
    }

 

GlobalPartitioner,默认选第一个

public class GlobalPartitioner<T> extends StreamPartitioner<T> {
    private static final long serialVersionUID = 1L;

    private int[] returnArray = new int[] { 0 };

    @Override
    public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
            int numberOfOutputChannels) {
        return returnArray;
    }

 

在RecordWriter中,emit会调用selectChannels来选取channel

    public void emit(T record) throws IOException, InterruptedException {
        for (int targetChannel : channelSelector.selectChannels(record, numChannels)) {
            sendToTarget(record, targetChannel);
        }
    }

posted on 2017-04-14 10:55  fxjwind  阅读(819)  评论(0编辑  收藏  举报