Flink - watermark生成
参考,Flink - Generating Timestamps / Watermarks
watermark,只有在有window的情况下才用到,所以在window operator前加上assignTimestampsAndWatermarks即可
不一定需要从source发出
1. 首先,source可以发出watermark
我们就看看kafka source的实现
protected AbstractFetcher( SourceContext<T> sourceContext, List<KafkaTopicPartition> assignedPartitions, SerializedValue<AssignerWithPeriodicWatermarks<T>> watermarksPeriodic, //在创建KafkaConsumer的时候assignTimestampsAndWatermarks SerializedValue<AssignerWithPunctuatedWatermarks<T>> watermarksPunctuated, ProcessingTimeService processingTimeProvider, long autoWatermarkInterval, //env.getConfig().setAutoWatermarkInterval() ClassLoader userCodeClassLoader, boolean useMetrics) throws Exception { //判断watermark的类型 if (watermarksPeriodic == null) { if (watermarksPunctuated == null) { // simple case, no watermarks involved timestampWatermarkMode = NO_TIMESTAMPS_WATERMARKS; } else { timestampWatermarkMode = PUNCTUATED_WATERMARKS; } } else { if (watermarksPunctuated == null) { timestampWatermarkMode = PERIODIC_WATERMARKS; } else { throw new IllegalArgumentException("Cannot have both periodic and punctuated watermarks"); } } // create our partition state according to the timestamp/watermark mode this.allPartitions = initializePartitions( assignedPartitions, timestampWatermarkMode, watermarksPeriodic, watermarksPunctuated, userCodeClassLoader); // if we have periodic watermarks, kick off the interval scheduler if (timestampWatermarkMode == PERIODIC_WATERMARKS) { //如果是定期发出WaterMark KafkaTopicPartitionStateWithPeriodicWatermarks<?, ?>[] parts = (KafkaTopicPartitionStateWithPeriodicWatermarks<?, ?>[]) allPartitions; PeriodicWatermarkEmitter periodicEmitter= new PeriodicWatermarkEmitter(parts, sourceContext, processingTimeProvider, autoWatermarkInterval); periodicEmitter.start(); } }
FlinkKafkaConsumerBase
public FlinkKafkaConsumerBase<T> assignTimestampsAndWatermarks(AssignerWithPeriodicWatermarks<T> assigner) { checkNotNull(assigner); if (this.punctuatedWatermarkAssigner != null) { throw new IllegalStateException("A punctuated watermark emitter has already been set."); } try { ClosureCleaner.clean(assigner, true); this.periodicWatermarkAssigner = new SerializedValue<>(assigner); return this; } catch (Exception e) { throw new IllegalArgumentException("The given assigner is not serializable", e); } }
这个接口的核心函数,定义,如何提取Timestamp和生成Watermark的逻辑
public interface AssignerWithPeriodicWatermarks<T> extends TimestampAssigner<T> { Watermark getCurrentWatermark(); }
public interface TimestampAssigner<T> extends Function { long extractTimestamp(T element, long previousElementTimestamp); }
如果在初始化KafkaConsumer的时候,没有assignTimestampsAndWatermarks,就不会产生watermark
可以看到watermark有两种,
PERIODIC_WATERMARKS,定期发送的watermark
PUNCTUATED_WATERMARKS,由element触发的watermark,比如有element的特征或某种类型的element来表示触发watermark,这样便于开发者来控制watermark
initializePartitions
case PERIODIC_WATERMARKS: { @SuppressWarnings("unchecked") KafkaTopicPartitionStateWithPeriodicWatermarks<T, KPH>[] partitions = (KafkaTopicPartitionStateWithPeriodicWatermarks<T, KPH>[]) new KafkaTopicPartitionStateWithPeriodicWatermarks<?, ?>[assignedPartitions.size()]; int pos = 0; for (KafkaTopicPartition partition : assignedPartitions) { KPH kafkaHandle = createKafkaPartitionHandle(partition); AssignerWithPeriodicWatermarks<T> assignerInstance = watermarksPeriodic.deserializeValue(userCodeClassLoader); partitions[pos++] = new KafkaTopicPartitionStateWithPeriodicWatermarks<>( partition, kafkaHandle, assignerInstance); } return partitions; }
KafkaTopicPartitionStateWithPeriodicWatermarks
这个类里面最核心的函数,
public long getTimestampForRecord(T record, long kafkaEventTimestamp) { return timestampsAndWatermarks.extractTimestamp(record, kafkaEventTimestamp); } public long getCurrentWatermarkTimestamp() { Watermark wm = timestampsAndWatermarks.getCurrentWatermark(); if (wm != null) { partitionWatermark = Math.max(partitionWatermark, wm.getTimestamp()); } return partitionWatermark; }
可以看到是调用你定义的AssignerWithPeriodicWatermarks来实现
PeriodicWatermarkEmitter
private static class PeriodicWatermarkEmitter implements ProcessingTimeCallback { public void start() { timerService.registerTimer(timerService.getCurrentProcessingTime() + interval, this); //start定时器,定时触发 } @Override public void onProcessingTime(long timestamp) throws Exception { //触发逻辑 long minAcrossAll = Long.MAX_VALUE; for (KafkaTopicPartitionStateWithPeriodicWatermarks<?, ?> state : allPartitions) { //对于每个partitions // we access the current watermark for the periodic assigners under the state // lock, to prevent concurrent modification to any internal variables final long curr; //noinspection SynchronizationOnLocalVariableOrMethodParameter synchronized (state) { curr = state.getCurrentWatermarkTimestamp(); //取出当前partition的WaterMark } minAcrossAll = Math.min(minAcrossAll, curr); //求min,以partition中最小的partition作为watermark } // emit next watermark, if there is one if (minAcrossAll > lastWatermarkTimestamp) { lastWatermarkTimestamp = minAcrossAll; emitter.emitWatermark(new Watermark(minAcrossAll)); //emit } // schedule the next watermark timerService.registerTimer(timerService.getCurrentProcessingTime() + interval, this); //重新设置timer } }
2. DataStream也可以设置定时发送Watermark
其实实现是加了个chain的TimestampsAndPeriodicWatermarksOperator
DataStream
/** * Assigns timestamps to the elements in the data stream and periodically creates * watermarks to signal event time progress. * * <p>This method creates watermarks periodically (for example every second), based * on the watermarks indicated by the given watermark generator. Even when no new elements * in the stream arrive, the given watermark generator will be periodically checked for * new watermarks. The interval in which watermarks are generated is defined in * {@link ExecutionConfig#setAutoWatermarkInterval(long)}. * * <p>Use this method for the common cases, where some characteristic over all elements * should generate the watermarks, or where watermarks are simply trailing behind the * wall clock time by a certain amount. * * <p>For the second case and when the watermarks are required to lag behind the maximum * timestamp seen so far in the elements of the stream by a fixed amount of time, and this * amount is known in advance, use the * {@link BoundedOutOfOrdernessTimestampExtractor}. * * <p>For cases where watermarks should be created in an irregular fashion, for example * based on certain markers that some element carry, use the * {@link AssignerWithPunctuatedWatermarks}. * * @param timestampAndWatermarkAssigner The implementation of the timestamp assigner and * watermark generator. * @return The stream after the transformation, with assigned timestamps and watermarks. * * @see AssignerWithPeriodicWatermarks * @see AssignerWithPunctuatedWatermarks * @see #assignTimestampsAndWatermarks(AssignerWithPunctuatedWatermarks) */ public SingleOutputStreamOperator<T> assignTimestampsAndWatermarks( AssignerWithPeriodicWatermarks<T> timestampAndWatermarkAssigner) { // match parallelism to input, otherwise dop=1 sources could lead to some strange // behaviour: the watermark will creep along very slowly because the elements // from the source go to each extraction operator round robin. final int inputParallelism = getTransformation().getParallelism(); final AssignerWithPeriodicWatermarks<T> cleanedAssigner = clean(timestampAndWatermarkAssigner); TimestampsAndPeriodicWatermarksOperator<T> operator = new TimestampsAndPeriodicWatermarksOperator<>(cleanedAssigner); return transform("Timestamps/Watermarks", getTransformation().getOutputType(), operator) .setParallelism(inputParallelism); }
TimestampsAndPeriodicWatermarksOperator
public class TimestampsAndPeriodicWatermarksOperator<T> extends AbstractUdfStreamOperator<T, AssignerWithPeriodicWatermarks<T>> implements OneInputStreamOperator<T, T>, Triggerable { private transient long watermarkInterval; private transient long currentWatermark; public TimestampsAndPeriodicWatermarksOperator(AssignerWithPeriodicWatermarks<T> assigner) { super(assigner); //AbstractUdfStreamOperator(F userFunction) this.chainingStrategy = ChainingStrategy.ALWAYS; //一定是chain } @Override public void open() throws Exception { super.open(); currentWatermark = Long.MIN_VALUE; watermarkInterval = getExecutionConfig().getAutoWatermarkInterval(); if (watermarkInterval > 0) { registerTimer(System.currentTimeMillis() + watermarkInterval, this); //注册到定时器 } } @Override public void processElement(StreamRecord<T> element) throws Exception { final long newTimestamp = userFunction.extractTimestamp(element.getValue(), //由element中基于AssignerWithPeriodicWatermarks提取时间戳 element.hasTimestamp() ? element.getTimestamp() : Long.MIN_VALUE); output.collect(element.replace(element.getValue(), newTimestamp)); //更新element的时间戳,再次发出 } @Override public void trigger(long timestamp) throws Exception { //定时器触发trigger // register next timer Watermark newWatermark = userFunction.getCurrentWatermark(); //取得watermark if (newWatermark != null && newWatermark.getTimestamp() > currentWatermark) { currentWatermark = newWatermark.getTimestamp(); // emit watermark output.emitWatermark(newWatermark); //发出watermark } registerTimer(System.currentTimeMillis() + watermarkInterval, this); //重新注册到定时器 } @Override public void processWatermark(Watermark mark) throws Exception { // if we receive a Long.MAX_VALUE watermark we forward it since it is used // to signal the end of input and to not block watermark progress downstream if (mark.getTimestamp() == Long.MAX_VALUE && currentWatermark != Long.MAX_VALUE) { currentWatermark = Long.MAX_VALUE; output.emitWatermark(mark); //forward watermark } }
可以看到在processElement会调用AssignerWithPeriodicWatermarks.extractTimestamp提取event time
然后更新StreamRecord的时间
然后在Window Operator中,
@Override public void processElement(StreamRecord<IN> element) throws Exception { final Collection<W> elementWindows = windowAssigner.assignWindows( element.getValue(), element.getTimestamp(), windowAssignerContext);
会在windowAssigner.assignWindows时以element的timestamp作为assign时间
对于watermark的处理,参考,Flink – window operator