poj 1584
题目 http://poj.org/problem?id=1584
题意:判断一个多边形是否为凸多边形,如果不是则输出”HOLE IS ILL-FORMED“,如果是则继续判断给定的一个圆是否在该凸多边形内,如果不在输出”PEG WILL NOT FIT“,否则输出”PEG WILL FIT“;
思路:用一维数组保存给的顶点,增加两个点构成一个使得数组从0 到n + 1 构成一个环。由于给点的点是按顺时针或逆时针的,所以先算出point[0],point[1],point[2]三个点构成的两条边的叉积,作为判断标准。如果一个多边形为凸变形,那么按照一个方向枚举每两条边时叉积的符号是相同的。然后判断两条边是否在 以两条边的公共点和圆心构成的直线的 两侧,并且判断圆心到到两条的距离是否大于半径。
知道直线经过的两点(P1.x , p1.y) , (p2.x , p2.y),根据两点式,该直线方程为 :(p1.y - p2.y) *x + (p2.x - p1.x) * y + p2.y * p1.x - p2.x * p1.y = 0,再根据点到直线 的距离公式求圆心到直线的距离。
View Code
1 #include <stdio.h> 2 #include <string.h> 3 #include <iostream> 4 #include <algorithm> 5 #include <math.h> 6 #define N 1000 7 8 using namespace std; 9 10 struct node 11 { 12 double x; 13 double y; 14 }; 15 node point[N]; 16 int n; 17 node p; 18 double r,xr,yr; 19 double juge(node p1,node p2,node p3) 20 { 21 double x1 = p2.x - p1.x; 22 double x2 = p3.x - p2.x; 23 double y1 = p2.y - p1.y; 24 double y2 = p3.y - p2.y; 25 double temp = x1 * y2 - y1 * x2; 26 return temp; 27 } 28 double jugee(double x1,double x2,double y1,double y2) 29 { 30 double ans = x1 * y2 - x2 * y1; 31 return ans; 32 } 33 int dis(node p1,node p2) 34 { 35 double A2 = p1.y - p2.y; 36 double B2 = p2.x - p1.x; 37 double C2 = p2.y * p1.x - p2.x * p1.y; 38 double dist2 = fabs(A2 * p.x + B2 * p.y + C2) / sqrt(A2 * A2 + B2 * B2); // 距离公式 39 if(dist2 >= r) return 1; 40 else return 0; 41 } 42 int main() 43 { 44 int i; 45 //freopen("data.txt","r",stdin); 46 while(scanf("%d",&n),n >= 3) 47 { 48 scanf("%lf%lf%lf",&r,&xr,&yr); 49 p.x = xr; 50 p.y = yr; 51 for(i = 1; i <= n; i++) 52 scanf("%lf%lf",&point[i].x,&point[i].y); 53 point[0] = point[n]; 54 point[n + 1] = point[1]; 55 int flag = 0; 56 int temp = (juge(point[0],point[1],point[2]) < 0) ? -1:1; 57 for(i = 1; i <= n - 1; i++) 58 { 59 if(temp * juge(point[i],point[i + 1],point[i + 2]) < 0) 60 { 61 flag = 1;break; 62 } 63 } 64 if(flag){cout<<"HOLE IS ILL-FORMED\n";continue;} 65 int mark = 0; 66 for(i = 1;i <= n; i++) 67 { 68 double x1,x2,y1,y2; 69 x1 = point[i].x - point[i - 1].x; 70 y1 = point[i].y - point[i - 1].y; 71 x2 = point[i].x - p.x; 72 y2 = point[i].y - p.y; 73 double temp = jugee(x1,x2,y1,y2); 74 x1 = point[i].x - point[i + 1].x; 75 y1 = point[i].y - point[i + 1].y; 76 x2 = point[i].x - p.x; 77 y2 = point[i].y - p.y; 78 double kemp = jugee(x1,x2,y1,y2); 79 if(temp * kemp > 0) // 如果两条边在直线的同侧,那么他们的叉积符号相同 80 { 81 flag = 1; 82 break; 83 } 84 if(!dis(point[i - 1],point[i])) 85 { 86 mark = 1; 87 break; 88 } 89 } 90 if(flag || mark) cout<<"PEG WILL NOT FIT\n"; 91 else cout<<"PEG WILL FIT\n"; 92 } 93 return 0; 94 }