TopK

问题描述:
从arr[1, n]这n个数中,找出最大的k个数,这就是经典的TopK问题。

栗子:
从arr[1, 12]={5,3,7,1,8,2,9,4,7,2,6,6} 这n=12个数中,找出最大的k=5个。

一、排序

排序是最容易想到的方法,将n个数排序之后,取出最大的k个,即为所得。

分析:明明只需要TopK,却将全局都排序了,这也是这个方法复杂度非常高的原因。那能不能不全局排序,而只局部排序呢?这就引出了第二个优化方法。

二、局部排序
不再全局排序,只对最大的k个排序。

冒泡是一个很常见的排序方法,每冒一个泡,找出最大值,冒k个泡,就得到TopK。

时间复杂度:\(O(n*k)\)

分析:冒泡,将全局排序优化为了局部排序,非TopK的元素是不需要排序的,节省了计算资源。不少朋友会想到,需求是TopK,是不是这最大的k个元素也不需要排序呢?这就引出了第三个优化方法。

三、堆
思路:只找到TopK,不排序TopK。

先用前k个元素生成一个小顶堆,这个小顶堆用于存储,当前最大的k个元素。

接着,从第k+1个元素开始扫描,和堆顶(堆中最小的元素)比较,如果被扫描的元素大于堆顶,则替换堆顶的元素,并调整堆,以保证堆内的k个元素,总是当前最大的k个元素。

直到,扫描完所有n-k个元素,最终堆中的k个元素,就是猥琐求的TopK。

时间复杂度:\(O(nlogk)\)

n个元素扫一遍,假设运气很差,每次都入堆调整,调整时间复杂度为堆的高度,即\(O(logk)\)。,故整体时间复杂度是\(O(nlogk)\)

分析:堆,将冒泡的TopK排序优化为了TopK不排序,节省了计算资源。堆,是求TopK的经典算法,那还有没有更快的方案呢?

四、随机选择
随机选择算在是《算法导论》中一个经典的算法,其时间复杂度为O(n),是一个线性复杂度的方法。

分治法(Divide&Conquer),把一个大的问题,转化为若干个子问题(Divide),每个子问题“都”解决,大的问题便随之解决(Conquer)。这里的关键词是“都”。从伪代码里可以看到,快速排序递归时,先通过partition把数组分隔为两个部分,两个部分“都”要再次递归。

分治法有一个特例,叫减治法。

减治法(Reduce&Conquer),把一个大的问题,转化为若干个子问题(Reduce),这些子问题中“只”解决一个,大的问题便随之解决(Conquer)。这里的关键词是“只”。

二分查找binary_search,BS,是一个典型的运用减治法思想的算法,从伪代码可以看到,二分查找,一个大的问题,可以用一个mid元素,分成左半区,右半区两个子问题。而左右两个子问题,只需要解决其中一个,递归一次,就能够解决二分查找全局的问题。

通过分治法与减治法的描述,可以发现,分治法的复杂度一般来说是大于减治法的。

partition会把整体分为两个部分。

更具体的,会用数组arr中的一个元素(默认是第一个元素t=arr[low])为划分依据,将数据arr[low, high]划分成左右两个子数组:

  • 左半部分,都比t大
  • 右半部分,都比t小
  • 中间位置i是划分元素

partition的时间复杂度是\(O(n)\)。把整个数组扫一遍,比t大的放左边,比t小的放右边,最后t放在中间N[i]。

TopK是希望求出arr[1,n]中最大的k个数,那如果找到了第k大的数,做一次partition,不就一次性找到最大的k个数了么?即partition后左半区的k个数。

这就是随机选择算法randomized_select。

这是一个典型的减治算法,递归内的两个分支,最终只会执行一个,它的时间复杂度是\(O(n)\)

再次强调一下:

  1. 分治法,大问题分解为小问题,小问题都要递归各个分支,例如:快速排序
  2. 减治法,大问题分解为小问题,小问题只要递归一个分支,例如:二分查找,随机选择

通过随机选择(randomized_select),找到arr[1, n]中第k大的数,再进行一次partition,就能得到TopK的结果。

posted @ 2021-03-06 11:29  Dazzling!  阅读(103)  评论(0编辑  收藏  举报