voc数据集(xml)转yolov5数据格式(txt)训练自己的数据集
#为方便自己查看,比较啰嗦。。。。。
1、数据集划分(代码来自别人的分享项目中的一个文件,在项目中能跑通,单独文件能否跑通,还没试):
import os import random import xml.etree.ElementTree as ET from PIL import Image import numpy as np #from utils.utils import get_classes #为方便单文件执行,这里将utils模块中的get_classes方法直接引入 # 获得类 #---------------------------------------------------# def get_classes(classes_path): with open(classes_path, encoding='utf-8') as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names, len(class_names) #--------------------------------------------------------------------------------------------------------------------------------# # annotation_mode用于指定该文件运行时计算的内容 # annotation_mode为0代表整个标签处理过程,包括获得VOCdevkit/VOC2007/ImageSets里面的txt以及训练用的2007_train.txt、2007_val.txt # annotation_mode为1代表获得VOCdevkit/VOC2007/ImageSets里面的txt # annotation_mode为2代表获得训练用的2007_train.txt、2007_val.txt #--------------------------------------------------------------------------------------------------------------------------------# annotation_mode = 0 #-------------------------------------------------------------------# # 必须要修改,用于生成2007_train.txt、2007_val.txt的目标信息 # 与训练和预测所用的classes_path一致即可 # 如果生成的2007_train.txt里面没有目标信息 # 那么就是因为classes没有设定正确 # 仅在annotation_mode为0和2的时候有效 #-------------------------------------------------------------------# classes_path = 'model_data/cls_classes.txt' #--------------------------------------------------------------------------------------------------------------------------------# # trainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1 # train_percent用于指定(训练集+验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1 # 仅在annotation_mode为0和1的时候有效 #--------------------------------------------------------------------------------------------------------------------------------# trainval_percent = 0.9 train_percent = 0.9 #-------------------------------------------------------# # 指向VOC数据集所在的文件夹 # 默认指向根目录下的VOC数据集 #-------------------------------------------------------# VOCdevkit_path = 'VOCdevkit' VOCdevkit_sets = [('2007', 'train'), ('2007', 'val')] classes, _ = get_classes(classes_path) #-------------------------------------------------------# # 统计目标数量 #-------------------------------------------------------# photo_nums = np.zeros(len(VOCdevkit_sets)) nums = np.zeros(len(classes)) def convert_annotation(year, image_id, list_file): in_file = open(os.path.join(VOCdevkit_path, 'VOC%s/Annotations/%s.xml'%(year, image_id)), encoding='utf-8') tree=ET.parse(in_file) root = tree.getroot() for obj in root.iter('object'): difficult = 0 if obj.find('difficult')!=None: difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult)==1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (int(float(xmlbox.find('xmin').text)), int(float(xmlbox.find('ymin').text)), int(float(xmlbox.find('xmax').text)), int(float(xmlbox.find('ymax').text))) list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id)) nums[classes.index(cls)] = nums[classes.index(cls)] + 1 if __name__ == "__main__": random.seed(0) if " " in os.path.abspath(VOCdevkit_path): raise ValueError("数据集存放的文件夹路径与图片名称中不可以存在空格,否则会影响正常的模型训练,请注意修改。") if annotation_mode == 0 or annotation_mode == 1: print("Generate txt in ImageSets.") xmlfilepath = os.path.join(VOCdevkit_path, 'VOC2007/Annotations') saveBasePath = os.path.join(VOCdevkit_path, 'VOC2007/ImageSets/Main') temp_xml = os.listdir(xmlfilepath) total_xml = [] for xml in temp_xml: if xml.endswith(".xml"): total_xml.append(xml) num = len(total_xml) list = range(num) tv = int(num*trainval_percent) tr = int(tv*train_percent) trainval= random.sample(list,tv) train = random.sample(trainval,tr) print("train and val size",tv) print("train size",tr) ftrainval = open(os.path.join(saveBasePath,'trainval.txt'), 'w') ftest = open(os.path.join(saveBasePath,'test.txt'), 'w') ftrain = open(os.path.join(saveBasePath,'train.txt'), 'w') fval = open(os.path.join(saveBasePath,'val.txt'), 'w') for i in list: name=total_xml[i][:-4]+'\n' if i in trainval: ftrainval.write(name) if i in train: ftrain.write(name) else: fval.write(name) else: ftest.write(name) ftrainval.close() ftrain.close() fval.close() ftest.close() print("Generate txt in ImageSets done.") if annotation_mode == 0 or annotation_mode == 2: print("Generate 2007_train.txt and 2007_val.txt for train.") type_index = 0 for year, image_set in VOCdevkit_sets: image_ids = open(os.path.join(VOCdevkit_path, 'VOC%s/ImageSets/Main/%s.txt'%(year, image_set)), encoding='utf-8').read().strip().split() list_file = open('%s_%s.txt'%(year, image_set), 'w', encoding='utf-8') for image_id in image_ids: list_file.write('%s/VOC%s/JPEGImages/%s.jpg'%(os.path.abspath(VOCdevkit_path), year, image_id)) convert_annotation(year, image_id, list_file) list_file.write('\n') photo_nums[type_index] = len(image_ids) type_index += 1 list_file.close() print("Generate 2007_train.txt and 2007_val.txt for train done.") def printTable(List1, List2): for i in range(len(List1[0])): print("|", end=' ') for j in range(len(List1)): print(List1[j][i].rjust(int(List2[j])), end=' ') print("|", end=' ') print() str_nums = [str(int(x)) for x in nums] tableData = [ classes, str_nums ] colWidths = [0]*len(tableData) len1 = 0 for i in range(len(tableData)): for j in range(len(tableData[i])): if len(tableData[i][j]) > colWidths[i]: colWidths[i] = len(tableData[i][j]) printTable(tableData, colWidths) if photo_nums[0] <= 500: print("训练集数量小于500,属于较小的数据量,请注意设置较大的训练世代(Epoch)以满足足够的梯度下降次数(Step)。") if np.sum(nums) == 0: print("在数据集中并未获得任何目标,请注意修改classes_path对应自己的数据集,并且保证标签名字正确,否则训练将会没有任何效果!") print("在数据集中并未获得任何目标,请注意修改classes_path对应自己的数据集,并且保证标签名字正确,否则训练将会没有任何效果!") print("在数据集中并未获得任何目标,请注意修改classes_path对应自己的数据集,并且保证标签名字正确,否则训练将会没有任何效果!") print("(重要的事情说三遍)。")
2、根据train,test,中的txt文件,去检索Annotations文件中的xml格式的标签信息,转化为txt格式的标签信息
import xml.etree.ElementTree as ET import pickle import os from os import listdir, getcwd from os.path import join sets=['train', 'test',] classes = ["fire","smoke"]#这里输入你的数据集类别 def convert(size, box):#读取xml文件中的数据,xywh dw = 1./size[0] dh = 1./size[1] x = (box[0] + box[1])/2.0 y = (box[2] + box[3])/2.0 w = box[1] - box[0] h = box[3] - box[2] x = x*dw w = w*dw y = y*dh h = h*dh return (x,y,w,h) def convert_annotation(image_id): in_file = open('Annotations/%s.xml'%(image_id),encoding='utf-8')#这里是读取xml的文件夹 out_file = open('Annotations/%s.txt'%(image_id), 'w',encoding='utf-8')#存入txt文件的文件夹 tree=ET.parse(in_file) root = tree.getroot() size = root.find('size') w = int(size.find('width').text) h = int(size.find('height').text) for obj in root.iter('object'): difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult) == 1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) bb = convert((w,h), b) out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') wd = getcwd() for image_set in sets: # if not os.path.exists('labels/'): # os.makedirs('labels/') image_ids = open('ImageSets/Main/%s.txt'%(image_set)).read().strip().split()#读取train.txt或者test.txt从而找到每个xml文件的文件名,这里的train.txt中仅包含文件名,不包好路径。 #list_file = open('%s.txt'%(image_set), 'w') for image_id in image_ids: #list_file.write('/root/object-detection/yolov5-master/data/police_obj/images/%s.jpg\n'%(image_id))#从写train.txt或者test.txt文件,把图片文件的绝对路径写入,方便读取图片 convert_annotation(image_id) #list_file.close()
3、根据train,test,中的txt文件,将图片分开
# -*- coding: UTF-8 -*- # !/usr/bin/env python import sys import re from PIL import Image #sys.path.append('E:\\CODE') # f1 = open('E:\CODE\TX\dir.txt','r') # f2 = open('E:\CODE\TX\dir.txt','w+') # for line in f1.readlines(): # if re.findall(' 1',line): #查找“空格1”的行 每行的格式000005 -1\n 000007 # f2.write(line)#把查找到的行写入f2. # f1.close() # f2.close() # data = [] import numpy as np data = [] for line in open("ImageSets/Main/test.txt", "r"): # 设置文件对象并读取每一行文件 data.append(line) # print(data) # f3 = open('E:\CODE\TX\dir.txt','r') for a in data: # print(a) # line3=line2[:-4] #读取每行去掉后四位的数# im = Image.open('JPEGImages/{}.jpg'.format(a[:-1])) # 打开改路径下的line3记录的的文件名 im.save('fenli_image/{}.jpg'.format(a[:-1])) # 把文件夹中指定的文件名称的图片另存到该路径下 im.close()
4、最后达到yolov5支持的数据组织形式
mydaya-------image -----test
| |
| |__train
|
|
|---labels-----test
|
|__train
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)