卷积神经网络识别手写数字实例
卷积神经网络识别手写数字实例:
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 定义一个初始化权重的函数 def weight_variables(shape): w = tf.Variable(tf.random_normal(shape=shape,mean=0.0,stddev=1.0)) return w # 定义一个初始化偏置的函数 def bias_variables(shape): b = tf.Variable(tf.constant(0.0,shape=shape)) return b def model(): ''' 自定义的卷积模型 :return: ''' # 1.准备数据的占位符 x [None,784] y_ture [None,10] with tf.variable_scope('data'): x = tf.placeholder(tf.float32,[None,784]) y_true = tf.placeholder(tf.int32,[None,10]) # 2. 一卷积层 卷积:5*5*1,,32个,strides=1 激活:tf.nn.relu 池化 with tf.variable_scope('conv1'): # 随机初始化权重 偏置[32] w_conv1 = weight_variables([5,5,1,32]) b_conv1 = bias_variables([32]) # 对x进行形状的改变[None,784] [None,28,28,1] x_reshape = tf.reshape(x,[-1,28,28,1]) # [None,28,28,1]---->[None,28,28,32] x_relu1 = tf.nn.relu(tf.nn.conv2d(x_reshape,w_conv1,strides=[1,1,1,1],padding='SAME') + b_conv1) # 池化 2*2 , strides2 [None,28,28,32]---->[None,14,14,32] x_pool1 = tf.nn.max_pool(x_relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') # 3. 二卷积层 卷积:5*5*32 64个filter,strides=1 激活:tf.nn.relu 池化: with tf.variable_scope('conv2'): # 随机初始化权重 权重:[5,5,32,64] 偏置[64] w_conv2 = weight_variables([5,5,32,64]) b_conv2 = bias_variables([64]) # 卷积,激活,池化计算 # [None,14,14,32]---->[None,14,14,64] x_relu2 = tf.nn.relu(tf.nn.conv2d(x_pool1,w_conv2,strides=[1,1,1,1],padding='SAME') + b_conv2) # 池化 2*2 strides 2,[None,14,14,64]--->[None,7,7,64] x_pool2 = tf.nn.max_pool(x_relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') # 4. 全连接层 [None,7,7,64]--->[None,7*7*64]*[7*7*64,10] + [10] = [None,10] with tf.variable_scope('conv2'): # 随机初始化权重和偏置 w_fc = weight_variables([7*7*64,10]) b_fc = bias_variables([10]) # 修改形状 [None,7,7,64] --->[None,7*7*64] x_fc_reshape = tf.reshape(x_pool2,[-1,7*7*64]) # 进行矩阵运算得出每个样本的10个结果 y_predict = tf.matmul(x_fc_reshape,w_fc) + b_fc return x,y_true,y_predict def conv_fc(): # 1. 获取真实数据 mnist = input_data.read_data_sets('./data/mnist/',one_hot=True) # 2. 定义模型,得出输出 x,y_true,y_predict = model() # 进行交叉熵损失计算 # 3. 求出所有样本的损失,然后求平均值 with tf.variable_scope('soft_cross'): # 求平均交叉熵损失 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true,logits=y_predict)) # 4. 梯度下降求出损失 with tf.variable_scope('optimizer'): train_op = tf.train.GradientDescentOptimizer(0.0001).minimize((loss)) # 5. 计算准确率 with tf.variable_scope('acc'): equal_list = tf.equal(tf.argmax(y_true,1),tf.argmax(y_predict,1)) # equal_list None个样本 [1,0,1,0,0,0,1,1,...] accracy = tf.reduce_mean(tf.cast(equal_list,tf.float32)) # 定义一个初始化变量的op init_op = tf.global_variables_initializer() # 开启会话运行 with tf.Session() as sess: sess.run(init_op) # 循环去训练 for i in range(1000): # 取出真实存在的特征值和目标值 mnist_x,mnist_y = mnist.train.next_batch(50) # 运行train_op训练 sess.run(train_op,feed_dict={x:mnist_x,y_true:mnist_y}) print('训练第%d步,准确率为:%f' % (i,sess.run(accracy,feed_dict={x:mnist_x,y_true:mnist_y}))) return None if __name__ == '__main__': conv_fc()