离散型概率分布-几何分布、二项分布and泊松分布

一、几何分布 X ~ Geo(p)

1. 定义

  • 进行一系列相互独立的试验。
  • 每次试验都有成功的可能,也有失败的可能,且每次试验成功概率相同。
  • 问题在于第一次成功需要进行多少次试验

 

2. 概率

随机变量X表示为取得第一次成功所需要的试验次数。

为求出X取特定数值r的概率,使用下式进行计算,

 

 

 

    其中p为成功概率,q = 1-p为失败概率。

 

    

 

3. 几何分布的期望和方差

         

 

二、二项分布 X ~ B(n,p)

1. 定义

  • 进行一系列相互独立的试验,且试验次数有限。
  • 每次试验都有成功的可能,也有失败的可能,且每次试验成功概率相同。
  • 问题在于n次试验中成功的试验次数

 

2. 概率

用X表示“n次试验中的成功次数”,为求出取得r次成功的概率,使用以下公式

    其中,p为成功概率,q = 1-p为失败概率,n为试验次数。

 

 

3. 二项分布的期望和方差

    

 

4. 几何分布和二项分布的同异之处。

相同点:都进行一系列相互独立的实验,且每次试验都会成功和失败两种可能。

不同点:二项分布中规定试验次数n,且在几何分布中关注的点在于“取得第一次成功所需的试验数”,二项分布关注的点在于“n次试验中成功的试验次数”。

 

三、泊松分布 X~Po(lambda)

1. 定义

已知在一个区间(时间 or 空间)内某事件平均发生次数lambda,问题在于给定区间内的事件发生次数

 

2. 概率

在求给定区间内发生r次事件的概率时,使用以下公式。

 ,其中lambda为条件里区间内平均发生次数。

 

3. 泊松分布的期望的方差

     

 

4. 使用泊松分布替代二项分布

由于泊松分布中 E(X) = Var(X) = lambda ,二项分布中 E(X) = np ,Var(X) = npq。

所以当二项分布期望近似等于方差时,即 当q近似等于1且n很大时,np 近似等于npq,泊松分布可近似等于二项分布

典型情况:n>=50 且 p<=0.1。

使用泊松分布替代二项分布是由于考虑到,二项分布计算概率时较为复杂,所以使用泊松分布近似替代二项分布,泊松分布中 lambda = np,即X~Po(np)

 

 

2020-05-03 22:30

 

posted @ 2020-05-03 22:32  傅余生  阅读(1747)  评论(0编辑  收藏  举报