朴素贝叶斯
朴素贝叶斯简介
朴素贝叶斯是贝叶斯决策理论的一部分,在讲朴素贝叶斯之前,先快速了解下贝叶斯决策理论。
大街上有着形形色色的人,有的人西装革履,有的人衣衫褴褛,当我们看到一个穿着西装,开着豪车的人,我们一般会把他归类到有钱人这一分类中,因为在我们的潜意识里,穿着西装开着豪车的人是有钱人的概率,要大过是穷人的概率。也就是说,我们会选择高概率对应的类别来分类,这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。
贝叶斯定理
在高中或者大学我们都学过,已知事件B发生的概率下,求事件A发生的概率,我们通常用P(A|B)来表示,其求解公式为:
而贝叶斯定理则为我们通过P(A|B)获得P(B|A)指明了道路,贝叶斯定理:
有了这些基础,我们现在可以了解一下朴素贝叶斯,朴素贝叶斯是一种简单的分类算法,它的基本思想是:对于给出待分类项,求解此项出现的条件下在各个类别出现的概率,哪个概率最大,就属于哪个类别。
使用朴素贝叶斯进行文档分类
由统计学得知,如果每个特征需要N个样本,那么对于10个特征则需要N10个样本,而1000个特征则需要N1000个样本,可以看到,所需要的样本数会随着特征数目的增大而迅速增大。如果特征之间相互独立,那么样本数就可以从N1000减少到1000*N了。所谓独立,指的是统计意义上的独立,即一个特征出现的可能性与它相邻的特征没有关系。举个例子,如果一个人的健康状况由体重和身高决定,体重和身高分别是两个特征,而体重的样本假设有[45kg,50kg],身高的样本假设有[160cm,175cm,180cm],我们需要判断一个人是否健康,需要2*3个样本才能包含所有的情况,即之前说的1000个特征则需要N1000个样本,如果现在判断一个人是否健康只要知道他的体重或者身高即可,就代表体重和身高是两个独立的特征,仅需2+3个特征,就能知道知道一个人是否健康。
假设一个论坛中有很多留言,为了屏蔽某些侮辱性的留言,需要基于计算条件概率来构建分类器。
代码1-1为词表到向量的转换函数
def loadDataSet(): postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0, 1, 0, 1, 0, 1] # 0代表正常言论,1代表侮辱性言论 return postingList, classVec def createVocabList(dataSet): vocabSet = set([]) for document in dataSet: vocabSet |= set(document) # 创建两个集合的并集 return list(vocabSet) def setOfWords2Vec(vocabList, inputSet): returnVec = [0] * len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] = 1 else: "the word: %s is not in my Vocabulary!" % word return returnVec
代码1-1中,第一个函数loadDataSet()创建了一些实验样本,第一个变量是文档集合,第二个变量是类标签集合,这里有两类,侮辱性和非侮辱性的。第二个函数createVocabList()会返回一个列表,列表中包含所有言论的单词且不重复。获得词汇表后,便可以使用第三个函数setOfWords2Vec(),该函数的输入参数为词汇表以及某条评论,输出的是文档向量,向量的每个元素为1或0,分别表示词汇表中的单词在输入文档中是否出现。
调用代码1-1的运行效果:
>>> listOposts, listClasses = loadDataSet() >>> myVocabList = createVocabList(listOposts) >>> myVocabList ['cute', 'love', 'help', 'garbage', 'I', 'problems', 'is', 'park', 'stop', 'flea', 'dalmation', 'ate', 'food', 'not', 'him', 'buying', 'posting', 'quit', 'worthless', 'licks', 'how', 'maybe', 'please', 'dog', 'to', 'stupid', 'so', 'take', 'mr', 'steak', 'has', 'my'] >>> setOfWords2Vec(myVocabList, listOposts[0]) [0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1] >>> setOfWords2Vec(myVocabList, listOposts[2]) [1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
训练算法:从词向量计算概率
前面介绍了如何将一组单词转换为一组数字,接下来便要使用这些数字计算概率。前面提到了贝叶斯准则,这里我们要重写贝叶斯准则:
基于上述的公式,对每个类计算该值,然后比较这两个概率值的大小。首先,可以通过类别i(侮辱性留言和非侮辱性留言)中文档数除以总的文档数来计算概率P(ci)。接下来计算P(w|ci),这里用到朴素贝叶斯假设。如果将w展开为一个个独立特征,那么就可以将上述概率写作P(w0,w1,w2……,wn|ci),它意味着可以使用P(w0|ci)P(w1|ci)P(w2|ci)P(wn|ci)来计算上述的概率。
代码1-2朴素贝叶斯分类器训练函数
from numpy import * def trainNB0(trainMatrix, trainCategory): numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCategory) / float(numTrainDocs) # 初始化概率 p0Num = zeros(numWords) p1Num = zeros(numWords) p0Denom = 0 p1Denom = 0 for i in range(numTrainDocs): # 向量相加 if trainCategory[i] == 0: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) else: p1Num += trainMatrix[i] p1Denom += sum(trainMatrix[i]) # 将每个词条的数目除以总词条数目得到条件概率 p0Vect = p0Num / p0Denom p1Vect = p1Num / p1Denom return p0Vect, p1Vect, pAbusive
调用代码1-2的运行结果:
>>> listOposts, listClasses = loadDataSet() >>> myVocabList = createVocabList(listOposts) >>> trainMat = [] >>> for postinDoc in listOposts: ... trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) ... >>> p0V, p1V, pAb = trainNB0(trainMat, listClasses) >>> p0V array([ 0.04166667, 0.04166667, 0.04166667, 0. , 0.04166667, 0.04166667, 0.04166667, 0. , 0.04166667, 0.04166667, 0.04166667, 0.04166667, 0. , 0. , 0.08333333, 0. , 0. , 0. , 0. , 0.04166667, 0.04166667, 0. , 0.04166667, 0.04166667, 0.04166667, 0. , 0.04166667, 0. , 0.04166667, 0.04166667, 0.04166667, 0.125 ]) >>> p1V array([ 0. , 0. , 0. , 0.05263158, 0. , 0. , 0. , 0.05263158, 0.05263158, 0. , 0. , 0. , 0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.10526316, 0. , 0. , 0.05263158, 0. , 0.10526316, 0.05263158, 0.15789474, 0. , 0.05263158, 0. , 0. , 0. , 0. ]) >>> pAb 0.5
代码1-2还存在一些缺陷,利用贝叶斯分类器对文档进行粉了时,要计算多个概率的乘积以获得文档属于某个类别的概率。如果其中一个概率值为0,那么最后的乘积也为0,为了降低这种影响,可以将所有词的出现数初始化为1,并将分母初始化为2。同时还存在另一个问题是溢出,由于很多很小的数相乘,最后四舍五入会得到0。一种解决办法是对乘积取自然对数。在代数中有ln(a*b)=ln(a)+ln(b),于是通过求对数可以避免溢出或浮点数四舍五入导致的错误。同时,采用自然对象进行处理不会有任何损失。图1-3给出了函数f(x)和ln(f(x))的曲线,检查者两条曲线,就会发现它们在相当区域内同时增加或同时减少,并在相同点取到极值。虽然它们取值不同,但并不影响最终结果。
经过上述修改,代码1-2应改为如代码1-4
代码1-4
from numpy import * def trainNB0(trainMatrix, trainCategory): numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCategory) / float(numTrainDocs) # 初始化概率 p0Num = ones(numWords) p1Num = ones(numWords) p0Denom = 2 p1Denom = 2 for i in range(numTrainDocs): # 向量相加 if trainCategory[i] == 0: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) else: p1Num += trainMatrix[i] p1Denom += sum(trainMatrix[i]) # 将每个词条的数目除以总词条数目得到条件概率 p0Vect = log(p0Num / p0Denom) p1Vect = log(p1Num / p1Denom) return p0Vect, p1Vect, pAbusive
代码1-5朴素贝叶斯分类函数
def classifyNB(vec2Classify, p0Vec, p1Vec, p1Class): p0 = sum(vec2Classify * p0Vec) + log(1.0 - p1Class) p1 = sum(vec2Classify * p1Vec) + log(p1Class) if p1 > p0: return 1 else: return 0 def testingNB(): listOposts, listClasses = loadDataSet() myVocabList = createVocabList(listOposts) trainMat = [] for postinDoc in listOposts: trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) p0V, p1V, pAb = trainNB0(trainMat, listClasses) testEntry = ['love', 'my', 'dalmation'] thisDoc = setOfWords2Vec(myVocabList, testEntry) print testEntry, ' classified as:', classifyNB(thisDoc, p0V, p1V, pAb) testEntry = ['stupid','garbage'] thisDoc = setOfWords2Vec(myVocabList, testEntry) print testEntry, ' classified as:', classifyNB(thisDoc, p0V, p1V, pAb)
调用代码1-5运行结果:
>>> testingNB() ['love', 'my', 'dalmation'] classified as: 0 ['stupid', 'garbage'] classified as: 1
代码1-9为本章代码整合
# coding:utf-8 def loadDataSet(): postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0, 1, 0, 1, 0, 1] # 0代表正常言论,1代表侮辱性言论 return postingList, classVec def createVocabList(dataSet): vocabSet = set([]) for document in dataSet: vocabSet |= set(document) # 创建两个集合的并集 return list(vocabSet) def setOfWords2Vec(vocabList, inputSet): returnVec = [0] * len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] = 1 else: "the word: %s is not in my Vocabulary!" % word return returnVec from numpy import * def trainNB0(trainMatrix, trainCategory): numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCategory) / float(numTrainDocs) # 初始化概率 p0Num = ones(numWords) p1Num = ones(numWords) p0Denom = 2 p1Denom = 2 for i in range(numTrainDocs): # 向量相加 if trainCategory[i] == 0: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) else: p1Num += trainMatrix[i] p1Denom += sum(trainMatrix[i]) # 将每个词条的数目除以总词条数目得到条件概率 p0Vect = log(p0Num / p0Denom) p1Vect = log(p1Num / p1Denom) return p0Vect, p1Vect, pAbusive def classifyNB(vec2Classify, p0Vec, p1Vec, p1Class): p0 = sum(vec2Classify * p0Vec) + log(1.0 - p1Class) p1 = sum(vec2Classify * p1Vec) + log(p1Class) if p1 > p0: return 1 else: return 0 def testingNB(): listOposts, listClasses = loadDataSet() myVocabList = createVocabList(listOposts) trainMat = [] for postinDoc in listOposts: trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) p0V, p1V, pAb = trainNB0(trainMat, listClasses) testEntry = ['love', 'my', 'dalmation'] thisDoc = setOfWords2Vec(myVocabList, testEntry) print testEntry, ' classified as:', classifyNB(thisDoc, p0V, p1V, pAb) testEntry = ['stupid', 'garbage'] thisDoc = setOfWords2Vec(myVocabList, testEntry) print testEntry, ' classified as:', classifyNB(thisDoc, p0V, p1V, pAb)