Hello Tensorflow

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

 

 

 

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])

  


 

 



model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])


model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test,  y_test, verbose=2)

  

 
posted @ 2020-10-15 18:31  付小同  阅读(103)  评论(0编辑  收藏  举报