从一堆弱分类器融合得到强分类器。
比如假设现在你只能水平或竖直线分割,那么无论如何都分不好,但是假设组合三次分割,就会得到如图所示的一个较好的分割线。
再比如,PLA 融合后有large margin 的效果
几种可能的融合策略:
1.Uniform Blending 一人一票,权值相同。
理论保证:
G 的 期望误差比g的平均期望来的小
把演算法的误差拆分为 bias 和 varriance
bias:平均表现离真实值差多少
variance:这些一个个的模型表现有多乱
所以融合减少了variance
2.Linear Blending
不同的g给不同的票数。
就是把Linear model用在转化过的假设h(theta x)上。
没看懂在干啥。。。
3.Bagging
bagging是一个uniform aggregation 的例子。
怎么样产生不同的小g?
不同算法的集成;
同一算法在不同设置下的集成;
数据集不同部分分配给不同分类器之后的集成。
随机森林就是一种bagging
booststrapping: 从手上的资料模拟出新的资料。
有放回抽样。不同的样本得到不同的g,最后融合。
就是所谓的bagging,透过booststrapping的机制生成不同的g,然后使用uniform blending进行融合。
总结:
AdaBoost http://www.cnblogs.com/futurehau/p/6490467.html
Bagging 上文
Decision Tree http://www.cnblogs.com/futurehau/p/6117992.html