原理:
存在一个样数据集合,样本集中每个数据都存在标签,输入没有标签的新数据之后,将新数据的每个特征与样本数据的对应特征进行比较,算法提取出样本集中特征最相似的k个数据,然后这k个数据中出现次数最多的分类作为新数据的分类。
k越大,决策边界越平滑。实际中选择k,cross validation!
优缺点:
精度高,对异常值不敏感。
缺点:计算复杂度高,空间复杂的高。
kNN基本代码,数字识别代码:
# _*_ coding:UTF8 _*_ # 测试demo 约会网站 数字识别 ''' Created on Sep 16, 2010 kNN: k Nearest Neighbors Input: inX: vector to compare to existing dataset (1xN) dataSet: size m data set of known vectors (NxM) labels: data set labels (1xM vector) k: number of neighbors to use for comparison (should be an odd number) Output: the most popular class label @author: pbharrin ''' from numpy import * import operator from os import listdir def classify0(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] diffMat = tile(inX, (dataSetSize,1)) - dataSet #tile函数复制 sqDiffMat = diffMat**2 print type(sqDiffMat) sqDistances = sqDiffMat.sum(axis=1) #按照行相加 distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() # 存储的是下标 classCount={} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] def createDataSet(): group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels = ['A','A','B','B'] return group, labels def file2matrix(filename): fr = open(filename) numberOfLines = len(fr.readlines()) #get the number of lines in the file returnMat = zeros((numberOfLines,3)) #prepare matrix to return classLabelVector = [] #prepare labels return fr = open(filename) index = 0 for line in fr.readlines(): line = line.strip() listFromLine = line.split('\t') returnMat[index,:] = listFromLine[0:3] classLabelVector.append(int(listFromLine[-1])) index += 1 return returnMat,classLabelVector def autoNorm(dataSet): minVals = dataSet.min(0) maxVals = dataSet.max(0) ranges = maxVals - minVals normDataSet = zeros(shape(dataSet)) m = dataSet.shape[0] normDataSet = dataSet - tile(minVals, (m,1)) normDataSet = normDataSet/tile(ranges, (m,1)) #element wise divide return normDataSet, ranges, minVals def datingClassTest(): hoRatio = 0.50 #hold out 10% datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #load data setfrom file normMat, ranges, minVals = autoNorm(datingDataMat) m = normMat.shape[0] numTestVecs = int(m*hoRatio) errorCount = 0.0 for i in range(numTestVecs): classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3) print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i]) if (classifierResult != datingLabels[i]): errorCount += 1.0 print "the total error rate is: %f" % (errorCount/float(numTestVecs)) print errorCount def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i in range(32): lineStr = fr.readline() for j in range(32): returnVect[0,32*i+j] = int(lineStr[j]) return returnVect def handwritingClassTest(): hwLabels = [] trainingFileList = listdir('digits/trainingDigits') #load the training set m = len(trainingFileList) trainingMat = zeros((m,1024)) for i in range(m): fileNameStr = trainingFileList[i] fileStr = fileNameStr.split('.')[0] #take off .txt if fileStr == '' : continue classNumStr = int(fileStr.split('_')[0]) hwLabels.append(classNumStr) trainingMat[i,:] = img2vector('digits/trainingDigits/%s' % fileNameStr) testFileList = listdir('digits/testDigits') #iterate through the test set errorCount = 0.0 mTest = len(testFileList) for i in range(mTest): fileNameStr = testFileList[i] fileStr = fileNameStr.split('.')[0] #take off .txt if fileStr == '': continue classNumStr = int(fileStr.split('_')[0]) vectorUnderTest = img2vector('digits/testDigits/%s' % fileNameStr) classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3) print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr) if (classifierResult != classNumStr): errorCount += 1.0 print "\nthe total number of errors is: %d" % errorCount print "\nthe total error rate is: %f" % (errorCount/float(mTest))
Kaggle 数字识别kNN代码
def kaggleHandWriting(): data = loadData('Kaggle/train.csv') m = len(data) n = len(data[0]) - 1 hwLabels = [] trainData = zeros((m, n)) for i in range(m): hwLabels.append(int(data[i][0])) for j in range(n): trainData[i][j] = int(data[i][j + 1]) testData = loadData('Kaggle/test.csv') mTest = len(testData) predictLabels = [] for i in range(mTest): curTest = [] for j in range(n): curTest.append(int(testData[i][j])) label = classify0(curTest, trainData, hwLabels, 5) predictLabels.append(label) print '第 %d 个数为:%d'%(i,label) saveResult(predictLabels) def loadData(filename): data = [] f = file(filename, 'rb') lines = csv.reader(f) for line in lines: print ','.join(line) data.append(line) del(data[0]) f.close() return data def saveResult(result): f = file('Kaggle/sample_submission.csv','wb') myWriter = csv.writer(f) myWriter.writerow(['ImageId','Label']) m = len(result) for i in range(m): myWriter.writerow([i,result[i]]) f.close()