futurehau

导航

 

1.mergeSort O(nlogn)的时间复杂度,需要O(n)的额外空间。

 1 public void sortIntegers2(int[] A) {
 2         // Write your code here
 3         if (A == null || A.length == 0) {
 4             return ;
 5         }
 6         int[] temp = new int[A.length];
 7         mergeSort(A, 0, A.length - 1, temp);
 8     }
 9     
10     private void mergeSort(int[] A, int start, int end, int[] temp) {
11         if (start == end) {
12             return ;
13         }
14         int mid = start + (end - start) / 2;
15         mergeSort(A, start, mid, temp);
16         mergeSort(A, mid + 1, end, temp);
17         merge(A, start, mid, end, temp);
18     }
19     
20     private void merge(int[] A, int start, int mid, int end, int[] temp) {
21         int index = start;
22         int left = start;
23         int right = mid + 1;
24         while(left <= mid && right <= end) {
25             if (A[left] < A[right]) {
26                 temp[index++] = A[left++];
27             } else {
28                 temp[index++] = A[right++];
29             }
30         }
31         while (left <= mid) {
32             temp[index++] = A[left++];
33         }
34         while (right <= end) {
35             temp[index++] = A[right++];
36         }
37         for (int i = start; i <= end; i++) {
38             A[i] = temp[i];
39         }
40     }
View Code

 

2.quickSort O(nlogn)的时间复杂度,需要O(1)的额外空间

 1 public void sortIntegers2(int[] A) {
 2         // Write your code here
 3         if (A == null || A.length == 0) {
 4             return ;
 5         }
 6         quickSort(A, 0, A.length - 1);
 7     }
 8     
 9     private void quickSort(int[] A, int start, int end) {
10         if (start >= end) {
11             return ;
12         }
13         int pivot = getPivot(A, start, end);
14         int i = start;
15         int j = end;
16         while (i <= j) {
17             while (i <= j && A[i] < pivot) {
18                 i++;
19             }
20             while (i <= j && A[j] > pivot) {
21                 j--;
22             }
23             if (i <= j) {
24                 swap(A, i, j);
25                 i++;
26                 j--;
27             }
28         }
29         quickSort(A, start, j);//Attention
30         quickSort(A, i, end);//Attention
31     }
32     
33     private int getPivot(int[] A, int start, int end) {
34         Random random = new Random();
35         int index = random.nextInt(end - start + 1);
36         return A[start + index];
37     }
38     
39     private void swap(int[] A, int i, int j) {
40         int temp = A[i];
41         A[i] = A[j];
42         A[j] = temp;
43     }
View Code

 

3.insertionSort O(n^2)的时间复杂度, 需要O(1)的额外空间。

 1 private void insertionSort(int[] A) {
 2         for (int p = 1; p < A.length; p++) {
 3             int j;
 4             int temp = A[p];
 5             for (j = p; j > 0 && A[j - 1] > temp ; j--) {
 6                     A[j] = A[j - 1];
 7             }
 8             A[j] = temp;
 9         }
10     }
View Code

 

4.Insertion Sort List O(n^2)时间复杂度,需要O(1)的额外空间

链表插入排序

真是尴尬,开始时受到数组插入排序的影响,总想着从有序部分的后面开始寻找插入位置,还想着怎么搞一个指向前边的指针,定式思维的危害啊。。。

其实从有序部分的前边开始寻找插入位置就可以了嘛

需要注意的是:

dummy.next 并没有指向head,有序部分的最后一个节点指向的是null,这就可以作为每轮插入的一个循环控制条件。

 1 public ListNode insertionSortList(ListNode head) {
 2         ListNode dummy = new ListNode(0);
 3         while (head != null) {
 4             ListNode node = dummy;
 5             while (node.next != null && node.next.val < head.val) {
 6                 node = node.next;
 7             }
 8             ListNode temp = head.next;
 9             head.next = node.next;
10             node.next = head;
11             head = temp;
12         }
13         return dummy.next;
14     }
View Code

 

5.归并排序

 1 public ListNode sortList(ListNode head) {
 2         return mergeSort(head);
 3     }
 4     public ListNode mergeSort(ListNode head) {
 5         if (head == null || head.next == null) {
 6             return head;
 7         }
 8         ListNode middle = findMiddle(head);
 9         ListNode right = middle.next;
10         middle.next = null;
11         ListNode left = mergeSort(head);
12         right = mergeSort(right);
13         return merge(left, right);
14     }
15     public ListNode merge(ListNode left, ListNode right) {
16         ListNode dummy = new ListNode(0);
17         ListNode tail = dummy;
18         while (left != null && right != null) {
19             if (left.val < right.val) {
20                 tail.next = left;
21                 tail = left;
22                 left = left.next;
23             } else {
24                 tail.next = right;
25                 tail = right;
26                 right = right.next;
27             }
28         }
29         tail.next = left == null ? right : left;
30         return dummy.next;
31     } 
32     public ListNode findMiddle(ListNode head) {
33         ListNode right = head;
34         ListNode dummy = new ListNode(0);
35         dummy.next = head;
36         ListNode left = dummy;
37         while (right != null && right.next != null) {
38             right = right.next.next;
39             left = left.next;
40         }
41         return left;
42     }
View Code

 

6.单项链表冒泡排序

public static ListNode bubbleSort(ListNode head) {
        ListNode dummyHead = new ListNode(0);
        dummyHead.next = head;
        ListNode cur = head;
        int count = 0;
        while (cur != null) {
            count++;
            cur = cur.next;
        }
        ListNode prev = dummyHead;
        for (int i = count; i > 0; i--) {
            prev = dummyHead;
            cur = prev.next; // Attention!
            int j = 0;
            while (j < i - 1) {
                if (cur.val > cur.next.val) {
                    ListNode temp = cur.next.next;
                    prev.next = cur.next;
                    cur.next.next = cur;
                    cur.next = temp;
                }
                prev = prev.next;
                cur = prev.next;
                j++;
            }
        }
        return dummyHead.next;
    }
View Code

 

posted on 2016-10-26 10:42  futurehau  阅读(207)  评论(0编辑  收藏  举报