futurehau

导航

 

这四个使用DFS来求解所有组合和排列的例子很有代表性,这里做一个总结:

1.不带重复元素的子集问题

 1  public ArrayList<ArrayList<Integer>> subsets(int[] nums) {
 2         // write your code here
 3         ArrayList<ArrayList<Integer>> results = new ArrayList<>();
 4         if (nums == null || nums.length == 0) {
 5             return results;
 6         }
 7         Arrays.sort(nums);
 8         DFS(results, new ArrayList<Integer>(), nums, 0);
 9         return results;
10     }
11     public void DFS(ArrayList<ArrayList<Integer>> results, ArrayList<Integer> cur,
12                     int[] nums, int start) {
13         results.add(new ArrayList<Integer>(cur));
14         for (int i = start; i < nums.length; i++) {
15             cur.add(nums[i]);
16             DFS(results, cur, nums, i+1);
17             cur.remove(cur.size()-1);
18         }      
19     }
View Code

 

2.带重复元素的子集问题

 1 public ArrayList<ArrayList<Integer>> subsetsWithDup(ArrayList<Integer> S) {
 2         // write your code here
 3         ArrayList<ArrayList<Integer>> results = new ArrayList<>();
 4         if (S == null || S.size() == 0) {
 5             return results;
 6         }
 7         Collections.sort(S);
 8         DFS(results, new ArrayList<Integer>(), S, 0);
 9         return results;
10     }
11     public void DFS(ArrayList<ArrayList<Integer>> results, 
12                     ArrayList<Integer> cur, 
13                     ArrayList<Integer> S,
14                     int start) {
15         results.add(new ArrayList<>(cur));
16         for (int i = start; i < S.size(); i++) {
17             if(i != start && S.get(i) == S.get(i - 1)) {
18                 continue;
19             }
20             cur.add(S.get(i));
21             DFS(results, cur, S, i+1);
22             cur.remove(cur.size()-1);
23         }                    
24     }
View Code

 

3.不带重复元素的全排列问题

 

 1 public List<List<Integer>> permute(int[] nums) {
 2         // write your code here
 3         List<List<Integer>> results = new ArrayList<List<Integer>>();
 4         if (nums == null || nums.length == 0) {
 5             results.add(new ArrayList<Integer>());
 6             return results;
 7         }
 8         boolean[] used = new boolean[nums.length];
 9         DFS(results, new ArrayList<Integer>(), nums, used);
10         return results;
11     }
12     public void DFS(List<List<Integer>> results, List<Integer> cur, int[] nums, boolean[] used) {
13         if (cur.size() == nums.length) {
14             results.add(new ArrayList<Integer>(cur));
15             return;
16         }
17         for(int i = 0; i<nums.length; i++) {
18             if (used[i]) {
19                 continue;
20             }
21             used[i] =true;
22             cur.add(nums[i]);
23             DFS(results, cur, nums, used);
24             used[i] =false;
25             cur.remove(cur.size()-1);
26         }
27     }
View Code

 

4.带重负元素的全排列问题

 1 public List<List<Integer>> permuteUnique(int[] nums) {
 2         // Write your code here
 3         List<List<Integer>> results = new ArrayList<List<Integer>>();
 4         if (nums == null || nums.length == 0) {
 5             results.add(new ArrayList<Integer>());
 6             return results;
 7         }
 8         Arrays.sort(nums);
 9         boolean[] used = new boolean[nums.length];
10         DFS(results, new ArrayList<Integer>(), used, nums);
11         return results;
12     }
13     public void DFS(List<List<Integer>> results, List<Integer> cur, boolean[] used, int[] nums) {
14         if (cur.size() == nums.length) {
15             results.add(new ArrayList<Integer>(cur));
16             return;
17         }
18         for (int i = 0; i < nums.length; i++) {
19             if (used[i]) {
20                 continue;
21             }
22             if (i > 0 && nums[i] == nums[i - 1] && !used[i-1]) {
23                 continue;
24             }
25             used[i] = true;
26             cur.add(nums[i]);
27             DFS(results, cur, used, nums);
28             used[i] = false;
29             cur.remove(cur.size() -1);
30         }
31     }
View Code

 

寻找丢失的数 II*

给一个由 1 - n 的整数随机组成的一个字符串序列,其中丢失了一个整数,请找到它。

回溯,当前位置可以单独,也可以和下一个结合,当前为0一定不行。curIndex控制啥时候结束。

 1 public int findMissing2(int n, String str) {
 2         // Write your code here
 3         if (n < 1 || str == null) {
 4             return 0;
 5         }
 6         char[] chars = str.toCharArray();
 7         boolean[] appeared = new boolean[n + 1];
 8         int[] curIndex = {0};
 9         help(appeared, chars, curIndex, n);
10         for (int i = 1; i < appeared.length; i++) {
11             if (!appeared[i]) {
12                 return i;
13             }
14         }
15         return -1;
16     }
17     public void help(boolean[] appeared, char[] chars, int[] curIndex, int n) {
18         if (curIndex[0] >= chars.length) {
19             return;
20         }
21         if (chars[curIndex[0]] == '0') {
22             return;
23         }
24         if (!appeared[chars[curIndex[0]] - '0']) {
25             appeared[chars[curIndex[0]] - '0'] = true;
26             curIndex[0]++;
27             help(appeared, chars, curIndex, n);
28             if (curIndex[0] >= chars.length) {
29                 return;
30             }
31             curIndex[0]--;
32             appeared[chars[curIndex[0]] - '0'] = false;
33         }
34         if (curIndex[0] < chars.length - 1) {
35             int c1 = chars[curIndex[0]] - '0';
36             int c2 = chars[curIndex[0] + 1] - '0';
37             int newnum = c1 * 10 + c2;
38             if (newnum <= n && !appeared[newnum]) {
39                 appeared[newnum] = true;
40                 curIndex[0] += 2;
41                 help(appeared, chars, curIndex, n);
42                 if (curIndex[0] >= chars.length) {
43                     return;
44                 }
45                 curIndex[0]-=2;
46                 appeared[newnum] = false;
47             }
48         }
49     }
View Code

 

posted on 2016-09-06 22:34  futurehau  阅读(1421)  评论(0编辑  收藏  举报