中国剩余定理证明

\[dp = d \mod {p-1} \\dq = d \mod {q-1} \\e = 65537 \\CRT \left \{ \begin{array}{c} x \equiv a_1 \mod n_1 \\x \equiv a_2 \mod n_2 \\...\end{array} \right . \\n_1,n_2,...,n_i两两互素 \\x一定存在,且存在构造法可解 \\令M = \prod_{1}^{k}{n_i} \\有M_i = \frac{M}{n_i} \\设M_i' 使得,M_i'* M_i \equiv 1 mod n_i \\则x = \sum_{1}^{i}a_i * M_i * M_i'  \mod {M} \\ (a+b) \mod n = a \mod n + b \mod n \\ 证x\equiv a_k \mod n_k \\ 当i=k: \\(a_k * M_k * M_k' \mod M) \mod n_k \\= a_k * M_k * M_k' \mod n_k \\= a_k \mod n_k \\ \\当i \ne k: \\(a_i * M_i * M_i' \mod M) \mod n_k \\a_i * \frac{M}{n_i} * M_i' \mod n_k \\=0 \\\ \\d = dp \mod {p-1} \\d = dq \mod {q-1} \\令g = gcd(p-1,q-1) \\p-1 = g*k_p,q-1 = g *k_q \\\left \{ \begin{array} {c} d \equiv d_1 \mod g \\ d \equiv d_2 \mod k_p \\ d \equiv d_3 \mod k_q \end{array} \right . \\ d \equiv dp \mod g \\dp = d \mod {p-1} \\dp = d \mod {k_q*g} \\(d \mod {k_q*g}) \equiv dp \mod p-1 \\\ \\\left \{ \begin{array} {c} d \equiv dp \mod g \\ d \equiv dp \mod k_p \\ d \equiv dq \mod k_q \end{array} \right .     \]

posted @ 2024-03-20 22:02  附体欢欢  阅读(38)  评论(0编辑  收藏  举报