浅谈多重集排列组合

浅谈多重集排列组合

本篇随笔简单讲解一下数学中的多重集排列组合。


一、多重集概念

集合的概念是唯一性。

多重集的特点就是不唯一性。

也就是同一种元素可以在多重集里面多次出现。

也就是multiset。


二、多重集排列数

假设多重集一共有\(N\)个元素。那么对这\(N\)个元素全排列,除掉相同元素的全排列的积即可。

也就是:

\[A=\frac{N!}{n_1!n_2!\cdots n_k!} \]

很显然,先把所有可能,也就是全排列处理出来,然后相同元素可以随意互换位置,按乘法原理除下去就行。


三、多重集组合数

多重集组合数这里比较难想。好好理解。

如果正着想,反正蒟蒻智商没有太通。

不妨反着来:对于有\(N\)种元素的多重集\(S\),选\(K\)个元素,注意是个不是种,的可行方案数。可以变成:现在有\(N\)个篮子,把\(K\)个元素扔进这些篮子里的方案数。

注意,这种是特殊情况,也就是说,每种元素无限多个可供挑选。

这样的话,用隔板法解决问题。

容易得出,答案也就是\(C_{N+K-1}^{N-1}\)

解释一下,现在有\(K\)个元素,分成\(N\)堆,也就是要往里插入\(N-1\)块板。按理讲应该是\(C_{K+1}^{N-1}\),但是因为允许有空集,也就是不插,那么就相当于每块板子插进去之后又产生了新元素,所以是这个答案。

那么,根据多重集的限制,现在每种元素有一个数量上限,怎么办呢?

很简单,采用容斥原理。关于容斥原理,请见:

浅谈容斥原理

上限是“至多放\(f[i]\)个”,那么如果我往这个里面放\(f[i]+1\)个,是不是就不合法了?

把不合法的减去即可。

式子就不写了,大家知道这么回事就行。

推荐例题:

CF451E

posted @   Seaway-Fu  阅读(3975)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示