CSP-S2020 T3 函数调用

CSP-S2020 T3 函数调用

洛谷评测传送门

题目描述

函数是各种编程语言中一项重要的概念,借助函数,我们总可以将复杂的任务分解成一个个相对简单的子任务,直到细化为十分简单的基础操作,从而使代码的组织更加严密、更加有条理。然而,过多的函数调用也会导致额外的开销,影响程序的运行效率。

某数据库应用程序提供了若干函数用以维护数据。已知这些函数的功能可分为三类:

  1. 将数据中的指定元素加上一个值;
  2. 将数据中的每一个元素乘以一个相同值;
  3. 依次执行若干次函数调用,保证不会出现递归(即不会直接或间接地调用本身)。

在使用该数据库应用时,用户可一次性输入要调用的函数序列(一个函数可能被调用多次),在依次执行完序列中的函数后,系统中的数据被加以更新。某一天,小 A 在应用该数据库程序处理数据时遇到了困难:由于频繁而低效的函数调用,系统在执行操作时进入了无响应的状态,他只好强制结束了数据库程序。为了计算出正确数据,小 A 查阅了软件的文档,了解到每个函数的具体功能信息,现在他想请你根据这些信息帮他计算出更新后的数据应该是多少。

输入格式

第一行一个正整数 nn,表示数据的个数。
第二行 nn 个整数,第 ii 个整数表示下标为 ii 的数据的初始值为 a_ia**i​。
第三行一个正整数 mm,表示数据库应用程序提供的函数个数。函数从 1 \sim m1∼m 编号。
接下来 mm 行中,第 jj(1 \le j \le m1≤jm)行的第一个整数为 T_jT**j​,表示 jj 号函数的类型:

  1. 若 T_j = 1T**j=1,接下来两个整数 P_j, V_jP**j,V**j 分别表示要执行加法的元素的下标及其增加的值;
  2. 若 T_j = 2T**j=2,接下来一个整数 V_jV**j 表示所有元素所乘的值;
  3. 若 T_j = 3T**j=3,接下来一个正整数 C_jC**j 表示 jj 号函数要调用的函数个数,
    随后 C_jC**j​ 个整数 g^{(j)}_1, g^{(j)}2, \ldots , g^{(j)}g1(j)​,g2(j)​,…,gCj​(j)​ 依次表示其所调用的函数的编号。

第 m + 4m+4 行一个正整数 QQ,表示输入的函数操作序列长度。
第 m + 5m+5 行 QQ 个整数 f_if**i​,第 ii 个整数表示第 ii 个执行的函数的编号。

输出格式

一行 nn 个用空格隔开的整数,按照下标 1 \sim n1∼n 的顺序,分别输出在执行完输入的函数序列后,数据库中每一个元素的值。答案对 \boldsymbol{998244353}998244353 取模。


题解:

考试之前特意总结的图论模型的抽象。甚至还无限接近正解地压了拓扑序上DP。结果来了一道这样的题,还是不会。

太菜了。

考场策略就是个渣渣。本来以为多考了一年能够好一些,结果还是渣渣。甚至还不如第一年去考。

太菜了。

太菜了。

真是太菜了。

题目中有很多地方暗示了要建图来考虑解决这个问题。比如无递归,就暗示了没有环。比如函数调用。调用的过程就是一张图。比如部分分给的调用关系是一棵树。

考场上时间真的不够了。这道题甚至都没有细细思考。就直接上手打了最裸的暴力,连线段树架上去优化都没加。真的没有发挥到自己比其他人优秀的地方,光看代码,给人的感觉就是这个人和普及选手甚至0基础没有任何的区别。

太菜了。

然后中间过程还爆。讲过多少遍,还是忘记了。

太菜了。

真的只是紧张么?

太菜了。

总的来说,这道题是一张DAG。这是很显然的。然后我们发现,不能简单地按拓扑序架数据结构。因为这个两种操作和两种操作各自的顺序就让人很迷茫。

于是考虑加法和乘法之间的转换。可以看出,乘法可以转化成若干次加法。所以对于一次加法,其后面的乘法操作可以转换成加几次来赋给这个加法,作为这个加法的贡献。

也就是,对于一个加法操作,其贡献是后面所有乘法操作的积。

对于整张拓扑图进行DP。统计后缀即。至于同一层的顺序问题,在使用链式前向星存储的时候,就是按顺序存的了,所以自然也会按顺序去遍历。

然后对整张拓扑图DP的时候可以把整张图的遍历顺序用深搜序转成序列问题。这样倒序再来一遍DP。就保证了转移的阶段性,即统计出了所有加法得到的贡献。

所以:

#include<cstdio>
#include<cstring>
#define int long long
using namespace std;
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int read()
{
	int x=0,gx=1;
	char ch=nc();
	while(ch<48||ch>57)
		if(ch=='-')
			gx=-1,ch=nc();
	while(ch>=48&&ch<=57)
		x=x*10+ch-48,ch=nc();
	return x*gx;
}
const int maxn=1e6+5;
const int mod=998244353;
int n,m,q;
int pos[maxn],val[maxn<<1],id[maxn],opt[maxn<<1],cnt;
int tot,head[maxn<<1],nxt[maxn<<1],to[maxn<<1],lazy[maxn<<1];
int gx[maxn],dp[maxn],ans[maxn];
void add(int x,int y)
{
	to[++tot]=y;
	lazy[tot]=1;
	nxt[tot]=head[x];
	head[x]=tot;
}
int dfs(int x)
{
	if(~gx[x])
		return gx[x];
	if(opt[x]==1)
		gx[x]=1;
	else if(opt[x]==2)
		gx[x]=val[x];
	else
	{
		gx[x]=1;
		for(int i=head[x];i;i=nxt[i])
		{
			lazy[i]=gx[x];
			gx[x]=(gx[x]*1ll*dfs(to[i]))%mod;
		}
	}
	id[++cnt]=x;
	return gx[x];
}
signed main()
{
	n=read();
	opt[0]=3;
	for(int i=1;i<=n;i++)
	{
		add(0,i);
		pos[i]=i;
		val[i]=read();
		opt[i]=1;
	}
	m=read();
	for(int i=n+1;i<=n+m;i++)
	{
		opt[i]=read();
		if(opt[i]==1)
			pos[i]=read(),val[i]=read();
		else if(opt[i]==2)
			val[i]=read();
		else
		{
			int c=read();
			while(c--)
			{
				int x=read();
				add(i,x+n);
			}
		}
	}
	q=read();
	for(int i=1;i<=q;i++)
	{
		int x=read();
		add(0,x+n);
	}
	memset(gx,-1,sizeof(gx));
	dfs(0);
	dp[0]=1;
	for(int i=cnt;i>=1;i--)
	{
		int x=id[i];
		for(int j=head[x];j;j=nxt[j])
		{
			int y=to[j];
			dp[y]=(dp[y]+dp[x]*1ll*lazy[j])%mod;
		}
		if(opt[x]==1)
			ans[pos[x]]=(ans[pos[x]]+dp[x]*1ll*val[x])%mod;
	}
	for(int i=1;i<=n;i++)
		printf("%lld ",ans[i]);
	puts("");
	return 0;
}

posted @ 2020-11-10 10:58  Seaway-Fu  阅读(480)  评论(2编辑  收藏  举报