洛谷 P4281 [AHOI2008]紧急集合 / 聚会

洛谷 P4281 [AHOI2008]紧急集合 / 聚会

洛谷传送门

题目描述

欢乐岛上有个非常好玩的游戏,叫做“紧急集合”。在岛上分散有 nn 个等待点,有 n-1n−1 条道路连接着它们,每一条道路都连接某两个等待点,且通过这些道路可以走遍所有的等待点,通过道路从一个点到另一个点要花费一个游戏币。

参加游戏的人三人一组,开始的时候,所有人员均任意分散在各个等待点上(每个点同时允许多个人等待),每个人均带有足够多的游戏币(用于支付使用道路的花费)、地图(标明等待点之间道路连接的情况)以及对话机(用于和同组的成员联系)。当集合号吹响后,每组成员之间迅速联系,了解到自己组所有成员所在的等待点后,迅速在 nn 个等待点中确定一个集结点,组内所有成员将在该集合点集合,集合所用花费最少的组将是游戏的赢家。

小可可和他的朋友邀请你一起参加这个游戏,由你来选择集合点,聪明的你能够完成这个任务,帮助小可可赢得游戏吗?

输入格式

第一行两个正整数 nn 和 mm,分别表示等待点的个数(等待点也从 11 到 nn 进行编号)和获奖所需要完成集合的次数。

随后 n-1n−1 行,每行两个正整数 a,ba,b,表示编号为 aa 和编号为 bb 的等待点之间有一条路。

随后 mm 行,每行用三个正整数 x,y,zx,y,z,表示某次集合前小可可、小可可的朋友以及你所在等待点的编号。

输出格式

输出共 mm 行,每行两个用空格隔开的整数 p,cp,c。其中第 ii 行表示第 ii 次集合点选择在编号为 pp 的等待点,集合总共的花费是 cc 个游戏币。


题解:

题意很简单。

那么对于这三个点,首先我们要考虑它的集合点应该在哪。容易想到的是,肯定和LCA有关。

但是样例会误导我们,事实上,集合点的选择应该符合:在这三个点两两搭配产生的三个LCA里,深度最深的那个LCA

比较容易证明这个结论。

然后统计路径长度的操作我们可以直接用深度来处理。

所以此题可切:

代码:

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=5*1e5+10;
int n,m;
int tot,to[maxn<<1],nxt[maxn<<1],head[maxn];
int top[maxn],size[maxn],deep[maxn],fa[maxn],son[maxn];
void add(int x,int y)
{
    to[++tot]=y;
    nxt[tot]=head[x];
    head[x]=tot;
}
void dfs1(int x,int f)
{
    fa[x]=f;
    deep[x]=deep[f]+1;
    size[x]=1;
    for(int i=head[x];i;i=nxt[i])
    {
        int y=to[i];
        if(y==f)
            continue;
        dfs1(y,x);
        size[x]+=size[y];
        if(!son[x]||size[y]>size[son[x]])
            son[x]=y;
    }
}
void dfs2(int x,int t)
{
    top[x]=t;
    if(!son[x])
        return;
    dfs2(son[x],t);
    for(int i=head[x];i;i=nxt[i])
    {
        int y=to[i];
        if(y==fa[x]||y==son[x])
            continue;
        dfs2(y,y);
    }
}
int lca(int x,int y)
{
    while(top[x]!=top[y])
    {
        if(deep[top[x]]<deep[top[y]])
            swap(x,y);
        x=fa[top[x]];
    }
    if(deep[x]<deep[y])
        swap(x,y);
    return y;
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<n;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        add(x,y);
        add(y,x);
    }
    dfs1(1,0);
    dfs2(1,1);
    for(int i=1;i<=m;i++)
    {
        int a,b,c;
        int fsw,qyb,jzw,pos;
        scanf("%d%d%d",&a,&b,&c);
        int l1=lca(a,b),l2=lca(a,c),l3=lca(b,c);
        if(deep[l1]>=deep[l2]&&deep[l1]>=deep[l3])
            qyb=a,jzw=b,fsw=c,pos=l1;
        else if(deep[l2]>=deep[l1]&&deep[l2]>=deep[l3])
            qyb=a,jzw=c,fsw=b,pos=l2;
        else if(deep[l3]>=deep[l2]&&deep[l3]>=deep[l1])
            qyb=c,jzw=b,fsw=a,pos=l3;
        int l4=lca(qyb,fsw);
		int ans=deep[qyb]+deep[jzw]-2*deep[pos]+deep[fsw]+deep[pos]-2*deep[l4];
   		printf("%d %d\n",pos,ans);
    }
    return 0;
}
posted @ 2020-10-20 20:43  Seaway-Fu  阅读(88)  评论(0编辑  收藏  举报