POJ 1741 Tree
POJ 1741 Tree
Description
Give a tree with n vertices,each edge has a length(positive integer less than 1001).
Define dist(u,v)=The min distance between node u and v.
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k.
Write a program that will count how many pairs which are valid for a given tree.
Input
The input contains several test cases. The first line of each test case contains two integers n, k. (n<=10000) The following n-1 lines each contains three integers u,v,l, which means there is an edge between node u and v of length l.
The last test case is followed by two zeros.
Output
For each test case output the answer on a single line.
Sample Input
5 4
1 2 3
1 3 1
1 4 2
3 5 1
0 0
Sample Output
8
题目大意:
给定一棵有n个节点的带边权无根树。求长度不超过k的路径有多少条。
题解:
点分治入门题。
关于点分治,可参以下:
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1e4+10;
int n,k,ans;
int tot,head[maxn],nxt[maxn<<1],to[maxn<<1],val[maxn<<1];
bool v[maxn];
int size[maxn],mp[maxn],dist[maxn];
int sum,root,s;
void add(int x,int y,int z)
{
to[++tot]=y;
val[tot]=z;
nxt[tot]=head[x];
head[x]=tot;
}
void getroot(int x,int f)
{
size[x]=1,mp[x]=0;
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(y==f||v[y])
continue;
getroot(y,x);
size[x]+=size[y];
mp[x]=max(mp[x],size[y]);
}
mp[x]=max(mp[x],sum-size[x]);
if(mp[x]<mp[root])
root=x;
}
void getdis(int x,int f,int d)
{
dist[++s]=d;
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(v[y]||y==f)
continue;
getdis(y,x,d+val[i]);
}
}
int calc(int x,int len)
{
s=0;
memset(dist,0,sizeof(dist));
getdis(x,0,len);
sort(dist+1,dist+s+1);
int l=1,r=s,cnt=0;
while(l<=r)
{
if(dist[r]+dist[l]<=k)
cnt+=(r-l),l++;
else
r--;
}
return cnt;
}
void dfz(int x)
{
ans+=calc(x,0);
v[x]=1;
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(v[y])
continue;
ans-=calc(y,val[i]);
sum=size[y],root=0;
getroot(y,0);
dfz(root);
}
}
int main()
{
while(scanf("%d%d",&n,&k)&&(n&&k))
{
memset(head,0,sizeof(head));
memset(v,0,sizeof(v));
tot=0;ans=0;
for(int i=1;i<n;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
mp[0]=sum=n;
getroot(1,0);
dfz(root);
printf("%d\n",ans);
}
return 0;
}