洛谷 P1002 过河卒

洛谷 P1002 过河卒

题目传送门

题目描述

棋盘上AA点有一个过河卒,需要走到目标BB点。卒行走的规则:可以向下、或者向右。同时在棋盘上CC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,AA点(0, 0)(0,0)、BB点(n, m)(n,m)(nn, mm为不超过2020的整数),同样马的位置坐标是需要给出的。

现在要求你计算出卒从AA点能够到达BB点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入格式

一行四个数据,分别表示BB点坐标和马的坐标。

输出格式

一个数据,表示所有的路径条数。

输入输出样例

输入 #1复制

输出 #1复制

说明/提示

结果可能很大!

题解1:

这是一道递推的典型题目。

我们很容易看出来,这道题的转移方程就是dp[i] [j]=dp[i-1] [j]+dp[i] [j-1];

但是这道题的细节坑死爹。

首先开long long。

其次,要多开至少3位的数组。

为了处理防越界,我们把n,m,x,y都+2.

最后我们还要特殊处理i= =2和j= =2时候的递推。

总之就是,60分很容易,100分比较难。

代码:

#include<cstdio>
#define ll long long
using namespace std;
ll dp[25][25];
int n,m,x,y;
int main()
{
    scanf("%d%d%d%d",&n,&m,&x,&y);
    n+=2,m+=2,x+=2,y+=2;
    for(int i=2;i<=n;i++)
        for(int j=2;j<=m;j++)
            dp[i][j]=-1;
    dp[x][y]=dp[x-2][y-1]=dp[x-1][y-2]=dp[x-1][y+2]=dp[x-2][y+1]
    =dp[x+1][y-2]=dp[x+1][y+2]=dp[x+2][y-1]=dp[x+2][y+1]=0;
    dp[2][2]=1;
    for(int i=2;i<=n;i++)
        for(int j=2;j<=m;j++)
        {
            if(i==2 && j==2)
                continue;
            if(dp[i][j]==0)
                continue;
            if(i==2)
                dp[i][j]=dp[i][j-1];
            else if(j==2)
                dp[i][j]=dp[i-1][j];
            else
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
        }
    printf("%lld",dp[n][m]);
    return 0;
}
posted @ 2019-08-20 16:39  Seaway-Fu  阅读(385)  评论(0编辑  收藏  举报