EPROM and EEPROM
An EPROM (rarely EROM), or erasable programmable read-only memory, is a type of programmable read-only memory (PROM) chip that retains its data when its power supply is switched off. Computer memory that can retrieve stored data after a power supply has been turned off and back on is called non-volatile. It is an array of floating-gate transistors individually programmed by an electronic device that supplies higher voltages than those normally used in digital circuits. Once programmed, an EPROM can be erased by exposing it to strong ultraviolet light source (such as from a mercury-vapor lamp). EPROMs are easily recognizable by the transparent fused quartz window on the top of the package, through which the silicon chip is visible, and which permits exposure to ultraviolet light during erasing.
As the quartz window is expensive to make, OTP (one-time programmable) chips were introduced; here, the die is mounted in an opaque package so it cannot be erased after programming – this also eliminates the need to test the erase function, further reducing cost. OTP versions of both EPROMs and EPROM-based microcontrollers are manufactured. However, OTP EPROM (whether separate or part of a larger chip) is being increasingly replaced by EEPROM for small sizes, where the cell cost isn't too important, and flash for larger sizes.
For large volumes of parts (thousands of pieces or more), mask-programmed ROMs are the lowest cost devices to produce. However, these require many weeks lead time to make, since the artwork for an IC mask layer must be altered to store data on the ROMs. Initially, it was thought that the EPROM would be too expensive for mass production use and that it would be confined to development only. It was soon found that small-volume production was economical with EPROM parts, particularly when the advantage of rapid upgrades of firmware was considered.
Some microcontrollers, from before the era of EEPROMs and flash memory, use an on-chip EPROM to store their program. Such microcontrollers include some versions of the Intel 8048, the Freescale 68HC11, and the "C" versions of the PIC microcontroller. Like EPROM chips, such microcontrollers came in windowed (expensive) versions that were used for debugging and program development. The same chip came in (somewhat cheaper) opaque OTP packages for production. Leaving the die of such a chip exposed to light can also change behavior in unexpected ways when moving from a windowed part used for development to a non-windowed part for production.
EEPROM (also E2PROM) stands for electrically erasable programmable read-only memory and is a type of non-volatile memory used in computers, integrated in microcontrollers for smart cards and remote keyless systems, and other electronic devices to store relatively small amounts of data by allowing individual bytes to be erased and reprogrammed.
EEPROMs are organized as arrays of floating-gate transistors. EEPROMs can be programmed and erased in-circuit, by applying special programming signals. Originally, EEPROMs were limited to single-byte operations, which made them slower, but modern EEPROMs allow multi-byte page operations. An EEPROM has a limited life for erasing and reprogramming, now reaching a million operations in modern EEPROMs. In an EEPROM that is frequently reprogrammed, the life of the EEPROM is an important design consideration.
Flash memory is a type of EEPROM designed for high speed and high density, at the expense of large erase blocks (typically 512 bytes or larger) and limited number of write cycles (often 10,000). There is no clear boundary dividing the two, but the term "EEPROM" is generally used to describe non-volatile memory with small erase blocks (as small as one byte) and a long lifetime (typically 1,000,000 cycles). Many microcontrollers include both: flash memory for the firmware, and a small EEPROM for parameters and history.
As of 2020, flash memory costs much less than byte-programmable EEPROM and is the dominant memory type wherever a system requires a significant amount of non-volatile solid-state storage. EEPROMs, however, are still used on applications that only require small amounts of storage, like in serial presence detect.
EEPROM devices use a serial or parallel interface for data input/output.
Serial bus devices
The common serial interfaces are SPI, I²C, Microwire, UNI/O, and 1-Wire. These use from 1 to 4 device pins and allow devices to use packages with 8 pins or less.
A typical EEPROM serial protocol consists of three phases: OP-Code Phase, Address Phase and Data Phase. The OP-Code is usually the first 8 bits input to the serial input pin of the EEPROM device (or with most I²C devices, is implicit); followed by 8 to 24 bits of addressing depending on the depth of the device, then the read or write data.
Each EEPROM device typically has its own set of OP-Code instructions mapped to different functions. Common operations on SPI EEPROM devices are:
- Write Enable (WRENAL)
- Write Disable (WRDI)
- Read Status Register (RDSR)
- Write Status Register (WRSR)
- Read Data (READ)
- Write Data (WRITE)
Other operations supported by some EEPROM devices are:
- Program
- Sector Erase
- Chip Erase commands
The Stanford Graduate Students in Electrical Engineering (GSEE) has annually hosted a dance (i.e. prom) called EEPROM since 2012.
六级/考研单词: seldom, data, compute, retrieve, array, transistor, electron, norm, digit, exposition, transparent, fuse, parcel, silicon, expense, mount, opaque, eliminate, farther, manufacture, mask, confine, rapid, upgrade, era, integrate, million, parameter, serial, detect, parallel, pin, protocol, implicit, instruct, disable, graduate
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· AI与.NET技术实操系列(六):基于图像分类模型对图像进行分类