celery
celery
celery是一个基于Python开发的模块,可以帮助我们对任务进行分发和处理。
1.1 环境的搭建
pip3 install celery==4.4
安装broker: redis或rabbitMQ
pip3 install redis / pika
windows需额外安装:pip install eventlet
1.2 快速使用
-
s1.py
from celery import Celery app = Celery('tasks', broker='redis://192.168.10.48:6379', backend='redis://192.168.10.48:6379') @app.task def x1(x, y): return x + y @app.task def x2(x, y): return x - y
-
s2.py
from s1 import x1 import datetime # 直接执行 # result = x1.delay(4, 4) # 定时执行 ctime = datetime.datetime.now() utc_ctime = datetime.datetime.utcfromtimestamp(ctime.timestamp()) s10 = datetime.timedelta(seconds=10) ctime_x = utc_ctime + s10 result = x1.apply_async(args=[4, 5], eta=ctime_x) print(result.id)
-
s3.py
from celery.result import AsyncResult from s1 import app result_object = AsyncResult(id="任务ID", app=app) print(result_object.status) data = result_object.get() print(data)
运行程序:
-
启动redis
-
启动worker
# 进入当前目录 celery worker -A s1 -l info celery worker -A s1 -l info -P eventlet
windows环境需注意: Traceback (most recent call last): File "d:\wupeiqi\py_virtual_envs\auction\lib\site-packages\billiard\pool.py", line 362, in workloop result = (True, prepare_result(fun(*args, **kwargs))) File "d:\wupeiqi\py_virtual_envs\auction\lib\site-packages\celery\app\trace.py", line 546, in _fast_trace_task tasks, accept, hostname = _loc ValueError: not enough values to unpack (expected 3, got 0) pip install eventlet celery worker -A s1 -l info -P eventlet
-
创建任务
python s2.py python s2.py
-
查看任务状态
# 填写任务ID pyhon s3.py
1.3 django中应用celery
之后,需要按照django-celery的要求进行编写代码。
-
第一步:【项目/项目/settings.py 】添加配置
CELERY_BROKER_URL = 'redis://192.168.16.85:6379' CELERY_ACCEPT_CONTENT = ['json'] CELERY_RESULT_BACKEND = 'redis://192.168.16.85:6379' CELERY_TASK_SERIALIZER = 'json'
-
第二步:【项目/项目/celery.py】在项目同名目录创建 celery.py
import os from celery import Celery # set the default Django settings module for the 'celery' program. os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'auction.settings') app = Celery('django_celery_demo') # 文件名随意 # Using a string here means the worker doesn't have to serialize # the configuration object to child processes. # - namespace='CELERY' means all celery-related configuration keys # should have a `CELERY_` prefix. app.config_from_object('django.conf:settings', namespace='CELERY') # Load task modules from all registered Django app configs. app.autodiscover_tasks() # # 去每个已注册app中读取 tasks.py 文件
-
第三步,【项目/app名称/tasks.py】
from celery import shared_task @shared_task def add(x, y): return x + y @shared_task def mul(x, y): return x * y
-
第四步,【项目/项目/
__init__.py
】from .celery import app as celery_app __all__ = ('celery_app',)
-
启动worker
进入项目目录 celery worker -A demos -l info -P eventlet
-
编写视图函数,调用celery去创建任务。
-
url
url(r'^create/task/$', task.create_task), url(r'^get/result/$', task.get_result),
-
视图函数
from django.shortcuts import HttpResponse from api.tasks import x1 def create_task(request): print('请求来了') result = x1.delay(2,2) print('执行完毕') return HttpResponse(result.id) def get_result(request): nid = request.GET.get('nid') from celery.result import AsyncResult # from demos.celery import app from demos import celery_app result_object = AsyncResult(id=nid, app=celery_app) # print(result_object.status) data = result_object.get() # 获取结果 # result_obj.forget() # 把数据在backend中移除 # result_obj.revoke() # 取消任务 # result_obj.revoke(terminate=True) # 强制取消任务 if result_object.successful(): result_object.get() result_obj.forget() elif result_object.failed(): pass else: pass return HttpResponse(data)
-
-
启动django程序
python manage.py ....
1.4 celery定时执行
# 定时执行
ctime = datetime.datetime.now()
utc_ctime = datetime.datetime.utcfromtimestamp(ctime.timestamp())
s10 = datetime.timedelta(seconds=10)
ctime_x = utc_ctime + s10
result = add.apply_async(args=[4, 5], eta=ctime_x)
1.5 周期性定时任务
- celery
- django中也可以结合使用
示例: 创建专场,三个定时任务
models.py
class Auction(models.Model):
"""
拍卖专场系列
"""
status_choices = (
(1, '未开拍'),
(2, '预展中'),
(3, '拍卖中'),
(4, '已结束')
)
status = models.PositiveSmallIntegerField(verbose_name='状态', choices=status_choices, default=1)
title = models.CharField(verbose_name='标题', max_length=32)
# FileField = 数据保存文件路径CharField + ModelForm显示时File来生成标签 + ModelForm.save()
cover = models.FileField(verbose_name='封面', max_length=128)
video = models.CharField(verbose_name='预览视频', max_length=128, null=True, blank=True)
preview_start_time = models.DateTimeField(verbose_name='预展开始时间')
preview_end_time = models.DateTimeField(verbose_name='预展结束时间')
auction_start_time = models.DateTimeField(verbose_name='拍卖开始时间')
auction_end_time = models.DateTimeField(verbose_name='拍卖结束时间')
deposit = models.PositiveIntegerField(verbose_name='全场保证金', default=1000)
total_price = models.PositiveIntegerField(verbose_name='成交额', null=True, blank=True)
goods_count = models.PositiveIntegerField(verbose_name='拍品数量', default=0)
bid_count = models.PositiveIntegerField(verbose_name='出价次数', default=0)
look_count = models.PositiveIntegerField(verbose_name='围观次数', default=0)
create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True)
class Meta:
verbose_name_plural = '拍卖系列'
def __str__(self):
return self.title
class AuctionTask(models.Model):
""" 定时任务 """
auction = models.OneToOneField(verbose_name='专场', to='Auction', on_delete=models.CASCADE)
preview_task = models.CharField(verbose_name='Celery预展任务ID', max_length=64)
auction_task = models.CharField(verbose_name='Celery拍卖任务ID', max_length=64)
auction_end_task = models.CharField(verbose_name='Celery拍卖结束任务ID', max_length=64)
views.py
def auction_add(request):
"""专场添加"""
if request.method == "GET":
form = AuctionModelForm()
return render(request, 'web/auction_form.html', {'form': form})
form = AuctionModelForm(data=request.POST, files=request.FILES)
if form.is_valid():
instance = form.save()
# TODO 创建三个定时任务
# 定时任务1 未开拍 - 预览中
preview_utc_datetime = datetime.datetime.utcfromtimestamp(form.instance.preview_start_time.timestamp())
preview_task_id = tasks.to_preview_status_task.apply_async(args=[instance.id, ], eta=preview_utc_datetime).id
# 定时任务2 预览中 - 开拍中
auction_utc_datetime = datetime.datetime.utcfromtimestamp(form.instance.auction_start_time.timestamp())
auction_task_id = tasks.to_auction_status_task.apply_async(args=[instance.id, ], eta=auction_utc_datetime).id
# 定时任务3 开拍中 - 已结束
auction_end_utc_datetime = datetime.datetime.utcfromtimestamp(form.instance.auction_end_time.timestamp())
auction_end_task_id = tasks.end_auction_task.apply_async(args=[instance.id, ], eta=auction_end_utc_datetime).id
models.AuctionTask.objects.create(
auction=instance,
preview_task=preview_task_id,
auction_task=auction_task_id,
auction_end_task=auction_end_task_id
)
return redirect('auction_list')
return render(request, 'web/auction_form.html', {'form': form})
tasks.py
import uuid
from celery import shared_task
from apps.api import models
@shared_task
def to_preview_status_task(auction_id):
"""未开拍 -> 预览中"""
models.Auction.objects.filter(id=auction_id).update(status=2)
models.AuctionItem.objects.filter(auction_id=auction_id).update(status=2)
@shared_task
def to_auction_status_task(auction_id):
"""预览中 -> 拍卖中"""
models.Auction.objects.filter(id=auction_id).update(status=3)
models.AuctionItem.objects.filter(auction_id=auction_id).update(status=3)
@shared_task
def end_auction_task(auction_id):
"""拍卖中 -> 已结束"""
models.Auction.objects.filter(id=auction_id).update(status=4)
models.AuctionItem.objects.filter(auction_id=auction_id).update(status=4)
celery 启动报错:django.db.utils.DatabaseError: DatabaseWrapper objects created in a thread can only be used in that same thread. The object with alias 'default' was created in thread id 2201580366656 and this is thread id 2201786259232
将启动方式改为:celery -A yourapp.celery worker --loglevel=info --pool=solo
celery worker -A auction -l info --pool=solo
-------------- celery@AXNB881 v4.4.0 (cliffs)
--- ***** -----
-- ******* ---- Windows-10-10.0.19041-SP0 2022-11-06 04:05:27
- *** --- * ---
- ** ---------- [config]
- ** ---------- .> app: django_celery_demo:0x2f429c457b8
- ** ---------- .> transport: redis://127.0.0.1:6379//
- ** ---------- .> results: redis://127.0.0.1:6379/
- *** --- * --- .> concurrency: 8 (solo)
-- ******* ---- .> task events: OFF (enable -E to monitor tasks in this worker)
--- ***** -----
-------------- [queues]
.> celery exchange=celery(direct) key=celery
[tasks]
. apps.api.tasks.add
. apps.api.tasks.mul
. apps.web.tasks.end_auction_task
. apps.web.tasks.to_auction_status_task
. apps.web.tasks.to_preview_status_task
[2022-11-06 04:05:27,539: INFO/MainProcess] Connected to redis://127.0.0.1:6379//
[2022-11-06 04:05:27,556: INFO/MainProcess] mingle: searching for neighbors
[2022-11-06 04:05:28,650: INFO/MainProcess] mingle: all alone
[2022-11-06 04:05:28,751: INFO/MainProcess] celery@AXNB881 ready.
[2022-11-06 04:06:28,294: INFO/MainProcess] Received task: apps.web.tasks.to_preview_status_task[99f50a50-39d7-43ec-9fda-03f80fc9e42f]
ETA:[2022-11-05 20:08:00+00:00]
[2022-11-06 04:06:28,309: INFO/MainProcess] Received task: apps.web.tasks.to_auction_status_task[efe22ea6-1b9c-4bc0-af0e-40f8c2c7e8fa]
ETA:[2022-11-05 20:09:00+00:00]
[2022-11-06 04:06:28,328: INFO/MainProcess] Received task: apps.web.tasks.end_auction_task[88fc1448-76f7-4da3-8863-f90667e8b172] ETA:[
2022-11-05 20:10:00+00:00]
[2022-11-06 04:08:00,040: INFO/MainProcess] Task apps.web.tasks.to_preview_status_task[99f50a50-39d7-43ec-9fda-03f80fc9e42f] succeeded
in 0.030999999988125637s: None
[2022-11-06 04:09:00,032: INFO/MainProcess] Task apps.web.tasks.to_auction_status_task[efe22ea6-1b9c-4bc0-af0e-40f8c2c7e8fa] succeeded
in 0.014999999984866008s: None
[2022-11-06 04:10:00,021: INFO/MainProcess] Task apps.web.tasks.end_auction_task[88fc1448-76f7-4da3-8863-f90667e8b172] succeeded in 0.0
30999999988125637s: None
worker: Hitting Ctrl+C again will terminate all running tasks!
注意点1
:设置里的时间戳
注意点2
:celery函数直接可以相互调用
@shared_task
def f1(order_id):
result = f2.delay(...)
result.id
@shared_task
def f2(order_id):
pass
注意点3
:调用celery函数时,传入的参数必须可json
task_id = twenty_four_hour.apply_async(args=[order_object.id], eta=date).id
@shared_task
def twenty_four_hour(可json):
pass
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具