262. 行程和用户
262. 行程和用户
表:
Trips
+-------------+----------+ | Column Name | Type | +-------------+----------+ | id | int | | client_id | int | | driver_id | int | | city_id | int | | status | enum | | request_at | date | +-------------+----------+ id 是这张表的主键。 这张表中存所有出租车的行程信息。每段行程有唯一 id ,其中 client_id 和 driver_id 是 Users 表中 users_id 的外键。 status 是一个表示行程状态的枚举类型,枚举成员为(‘completed’, ‘cancelled_by_driver’, ‘cancelled_by_client’) 。
表:Users
+-------------+----------+ | Column Name | Type | +-------------+----------+ | users_id | int | | banned | enum | | role | enum | +-------------+----------+ users_id 是这张表的主键。 这张表中存所有用户,每个用户都有一个唯一的 users_id ,role 是一个表示用户身份的枚举类型,枚举成员为 (‘client’, ‘driver’, ‘partner’) 。 banned 是一个表示用户是否被禁止的枚举类型,枚举成员为 (‘Yes’, ‘No’) 。
取消率 的计算方式如下:(被司机或乘客取消的非禁止用户生成的订单数量) / (非禁止用户生成的订单总数)。
写一段 SQL 语句查出 "2013-10-01"
至 "2013-10-03"
期间非禁止用户(乘客和司机都必须未被禁止)的取消率。非禁止用户即 banned 为 No 的用户,禁止用户即 banned 为 Yes 的用户。
返回结果表中的数据可以按任意顺序组织。其中取消率 Cancellation Rate
需要四舍五入保留 两位小数 。
查询结果格式如下例所示。
示例:
输入: Trips 表: +----+-----------+-----------+---------+---------------------+------------+ | id | client_id | driver_id | city_id | status | request_at | +----+-----------+-----------+---------+---------------------+------------+ | 1 | 1 | 10 | 1 | completed | 2013-10-01 | | 2 | 2 | 11 | 1 | cancelled_by_driver | 2013-10-01 | | 3 | 3 | 12 | 6 | completed | 2013-10-01 | | 4 | 4 | 13 | 6 | cancelled_by_client | 2013-10-01 | | 5 | 1 | 10 | 1 | completed | 2013-10-02 | | 6 | 2 | 11 | 6 | completed | 2013-10-02 | | 7 | 3 | 12 | 6 | completed | 2013-10-02 | | 8 | 2 | 12 | 12 | completed | 2013-10-03 | | 9 | 3 | 10 | 12 | completed | 2013-10-03 | | 10 | 4 | 13 | 12 | cancelled_by_driver | 2013-10-03 | +----+-----------+-----------+---------+---------------------+------------+ Users 表: +----------+--------+--------+ | users_id | banned | role | +----------+--------+--------+ | 1 | No | client | | 2 | Yes | client | | 3 | No | client | | 4 | No | client | | 10 | No | driver | | 11 | No | driver | | 12 | No | driver | | 13 | No | driver | +----------+--------+--------+ 输出: +------------+-------------------+ | Day | Cancellation Rate | +------------+-------------------+ | 2013-10-01 | 0.33 | | 2013-10-02 | 0.00 | | 2013-10-03 | 0.50 | +------------+-------------------+ 解释: 2013-10-01: - 共有 4 条请求,其中 2 条取消。 - 然而,id=2 的请求是由禁止用户(user_id=2)发出的,所以计算时应当忽略它。 - 因此,总共有 3 条非禁止请求参与计算,其中 1 条取消。 - 取消率为 (1 / 3) = 0.33 2013-10-02: - 共有 3 条请求,其中 0 条取消。 - 然而,id=6 的请求是由禁止用户发出的,所以计算时应当忽略它。 - 因此,总共有 2 条非禁止请求参与计算,其中 0 条取消。 - 取消率为 (0 / 2) = 0.00 2013-10-03: - 共有 3 条请求,其中 1 条取消。 - 然而,id=8 的请求是由禁止用户发出的,所以计算时应当忽略它。 - 因此,总共有 2 条非禁止请求参与计算,其中 1 条取消。 - 取消率为 (1 / 2) = 0.50
1.两个join去除掉banne为yes的用户或司机(即禁止用户不参与计算) 2.用sum(if(t.STATUS='completed',0,1))计算出被司机或乘客取消的非禁止用户生成的订单数量 3.用COUNT(t.STATUS),2)计算出非禁止用户生成的订单总数 4.字段名与关键字一致的用``反引号处理 select t.request_at as `Day`, ROUND(sum(if(t.STATUS='completed',0,1))/COUNT(t.STATUS),2) as `Cancellation Rate` from Trips as t inner join Users as u1 on (t.client_id = u1.users_id and u1.banned = 'No') inner join Users as u2 on (t.driver_id = u2.users_id and u2.banned = 'No') where t.request_at BETWEEN '2013-10-01' and '2013-10-03' GROUP BY t.request_at ORDER BY t.request_at