delphi AES另外一个演示

uses
   ElAES, Math
type
  TForm1 = class(TForm)
    Label1: TLabel;
    Edit1: TEdit;
    OpenDialog1: TOpenDialog;
    Button1: TButton;
    Button2: TButton;
    Label2: TLabel;
    Label3: TLabel;
    Label4: TLabel;
    Label5: TLabel;
    Edit2: TEdit;
    Label_Time: TLabel;
    Label7: TLabel;
    Label8: TLabel;
    Label9: TLabel;
    Label_Status: TLabel;
    Memo_PlainText: TMemo;
    Memo_CyperText: TMemo;
    Label11: TLabel;
    Label12: TLabel;
    Memo_UncipherText: TMemo;
    Label13: TLabel;
    BitBtn_Encrypt: TBitBtn;
    BitBtn_Decypt: TBitBtn;
    Edit3: TEdit;
    Label6: TLabel;
    Button3: TButton;
    procedure Button1Click(Sender: TObject);
    procedure Button2Click(Sender: TObject);
    procedure BitBtn_EncryptClick(Sender: TObject);
    procedure BitBtn_DecyptClick(Sender: TObject);
    procedure Button3Click(Sender: TObject);
  private
    { Private declarations }
  public
    { Public declarations }
  end;



var
  Form1: TForm1;
  EncryptedText: string;

function StringToHex(S: string): string; forward;
function HexToString(S: string): string; forward;

implementation

{$R *.DFM}

function StringToHex(S: string): string;
var
	i: integer;

begin
  Result := '';

  // Go throught every single characters, and convert them
  // to hexadecimal...
	for i := 1 to Length( S ) do
  	Result := Result + IntToHex( Ord( S[i] ), 2 );
end;

function HexToString(S: string): string;
var
	i: integer;

begin
  Result := '';

  // Go throught every single hexadecimal characters, and convert
  // them to ASCII characters...
  for i := 1 to Length( S ) do
  begin
    // Only process chunk of 2 digit Hexadecimal...
  	if ((i mod 2) = 1) then
	  	Result := Result + Chr( StrToInt( '0x' + Copy( S, i, 2 )));
  end;
end;


procedure TForm1.Button1Click(Sender: TObject);
begin
  if OpenDialog1.Execute then
    Edit1.Text := OpenDialog1.FileName;
end;

procedure TForm1.Button2Click(Sender: TObject);
var
  Source, Dest: TFileStream;
  SrcFile, DestFile: string;
  Start, Stop: cardinal;
  Size: integer;
  Key: TAESKey128;
  SrcBuf, DstBuf: array [0..16383] of byte;
  SrcSize, DstSize: integer;
begin
  // Encryption
  Label_Status.Caption := 'Encrypting...';
  Refresh;
  Source := TFileStream.Create(Edit1.Text, fmOpenRead);
  try
    Label4.Caption := IntToStr(Source.Size div 1024) + ' KB';
    Refresh;
    Dest := TFileStream.Create(edit3.text, fmCreate);
    try
      Size := Source.Size;
      Dest.WriteBuffer(Size, SizeOf(Size));

      FillChar(Key, SizeOf(Key), 0);
      Move(PChar(Edit2.Text)^, Key, Min(SizeOf(Key), Length(Edit2.Text)));

      Start := GetTickCount;
      EncryptAESStreamECB(Source, 0, Key, Dest);
      Stop := GetTickCount;
      Label_Time.Caption := IntToStr(Stop - Start) + ' ms';
      Refresh;
    finally
      Dest.Free;
    end;
  finally
    Source.Free;
  end;
  Label_Status.Caption := '';
end;


(*******************************************************************************
   This routine will encrypt text using a TStringStream... Once the text is
   encrypted it will be converted to hexadecimals to assure visibility of the
   text. If the text is not converted, it might not be visible since their might
   by null characters  within the encrypted string therefore text will be lost.

   If the encrypted text is saved to a memory variable or file it is not
   necessary convert it to hexa...
*******************************************************************************)
procedure TForm1.BitBtn_EncryptClick(Sender: TObject);
var
  Source: TStringStream;
  Dest: TStringStream;
  Start, Stop: cardinal;
  Size: integer;
  Key: TAESKey128;

begin
  // Encryption
  Label_Status.Caption := 'Encrypting...';
  Refresh;
  Source := TStringStream.Create( Memo_PlainText.Text );
  Dest   := TStringStream.Create( '' );

  try
    // Save data to memory stream...
    Size := Source.Size;
    Dest.WriteBuffer( Size, SizeOf(Size) );

    // Prepare key...
    FillChar( Key, SizeOf(Key), 0 );
    Move( PChar(Edit2.Text)^, Key, Min( SizeOf( Key ), Length( Edit2.Text )));

    // Start encryption...
    Start := GetTickCount;
    EncryptAESStreamECB( Source, 0, Key, Dest );
    Stop := GetTickCount;
    Label_Time.Caption := IntToStr(Stop - Start) + ' ms';
    Refresh;

    // Display encrypted text using hexadecimals...
	  Memo_CyperText.Lines.BeginUpdate;
    Memo_CyperText.Text := StringToHex( Dest.DataString );
	  Memo_CyperText.Lines.EndUpdate;

  finally
    Source.Free;
    Dest.Free;
  end;
end;

procedure TForm1.BitBtn_DecyptClick(Sender: TObject);
var
  Source: TStringStream;
  Dest: TStringStream;
  Start, Stop: cardinal;
  Size: integer;
  Key: TAESKey128;
  EncryptedText: TStrings;
  S: string;

begin
  // Convert hexadecimal to a strings before decrypting...
  Source := TStringStream.Create( HexToString( Memo_CyperText.Text ));
  Dest   := TStringStream.Create( '' );

  try
    // Start decryption...
    Size := Source.Size;
    Start := GetTickCount;
    Source.ReadBuffer(Size, SizeOf(Size));

    // Prepare key...
    FillChar(Key, SizeOf(Key), 0);
    Move(PChar(Edit2.Text)^, Key, Min(SizeOf(Key), Length(Edit2.Text)));

    // Decrypt now...
    DecryptAESStreamECB(Source, Source.Size - Source.Position, Key, Dest);
    Stop := GetTickCount;
    Label8.Caption := IntToStr(Stop - Start) + ' ms';
    Refresh;

    // Display unencrypted text...
    Memo_UncipherText.Text := Dest.DataString;

  finally
    Source.Free;
    Dest.Free;
  end;
end;

procedure TForm1.Button3Click(Sender: TObject);
var
  Source, Dest: TFileStream;
  SrcFile, DestFile: string;
  Start, Stop: cardinal;
  Size: integer;
  Key: TAESKey128;
  SrcBuf, DstBuf: array [0..16383] of byte;
  SrcSize, DstSize: integer;
begin
  // Decryption
  Label_Status.Caption := 'Decrypting...';
  Refresh;
  Source := TFileStream.Create(edit1.text, fmOpenRead);
  try
    Source.ReadBuffer(Size, SizeOf(Size));
    Dest := TFileStream.Create(edit3.text, fmCreate);
    try
      FillChar(Key, SizeOf(Key), 0);
      Move(PChar(Edit2.Text)^, Key, Min(SizeOf(Key), Length(Edit2.Text)));

      Start := GetTickCount;
      DecryptAESStreamECB(Source, Source.Size - Source.Position, Key, Dest);
      Dest.Size := Size;
      Stop := GetTickCount;
      Label8.Caption := IntToStr(Stop - Start) + ' ms';
      Refresh;
    finally
      Dest.Free;
    end;
  finally
    Source.Free;
  end;
  Label_Status.Caption := '';
end;

ELAES:
(**************************************************)
(*                                                *)
(*     Advanced Encryption Standard (AES)         *)
(*                                                *)
(*     Copyright (c) 1998-2001                    *)
(*     EldoS, Alexander Ionov                     *)
(*                                                *)
(**************************************************)

unit ElAES;

interface

uses
  Classes, SysUtils;

type
  EAESError = class(Exception);

  PInteger  = ^Integer;

  TAESBuffer = array [0..15] of byte;
  TAESKey128 = array [0..15] of byte;
  TAESKey192 = array [0..23] of byte;
  TAESKey256 = array [0..31] of byte;
  TAESExpandedKey128 = array [0..43] of longword;
  TAESExpandedKey192 = array [0..53] of longword;
  TAESExpandedKey256 = array [0..63] of longword;

  PAESBuffer =^TAESBuffer;
  PAESKey128 =^TAESKey128;
  PAESKey192 =^TAESKey192;
  PAESKey256 =^TAESKey256;
  PAESExpandedKey128 =^TAESExpandedKey128;
  PAESExpandedKey192 =^TAESExpandedKey192;
  PAESExpandedKey256 =^TAESExpandedKey256;

// Key expansion routines for encryption  

procedure ExpandAESKeyForEncryption(const Key: TAESKey128;
  var ExpandedKey: TAESExpandedKey128); overload;
procedure ExpandAESKeyForEncryption(const Key: TAESKey192;
  var ExpandedKey: TAESExpandedKey192); overload;
procedure ExpandAESKeyForEncryption(const Key: TAESKey256;
  var ExpandedKey: TAESExpandedKey256); overload;

// Block encryption routines

procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey128;
  var OutBuf: TAESBuffer); overload;
procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey192;
  var OutBuf: TAESBuffer); overload;
procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey256;
  var OutBuf: TAESBuffer); overload;

// Stream encryption routines (ECB mode)

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey128; Dest: TStream); overload;
procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128; Dest: TStream); overload;

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey192; Dest: TStream); overload;
procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192; Dest: TStream); overload;

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey256; Dest: TStream); overload;
procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256; Dest: TStream); overload;

// Stream encryption routines (CBC mode)

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey128; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128;  const InitVector: TAESBuffer;
  Dest: TStream); overload;

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey192; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192;  const InitVector: TAESBuffer;
  Dest: TStream); overload;

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey256; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256;  const InitVector: TAESBuffer;
  Dest: TStream); overload;

// Key transformation routines for decryption

procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey128); overload;
procedure ExpandAESKeyForDecryption(const Key: TAESKey128;
  var ExpandedKey: TAESExpandedKey128); overload;

procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey192); overload;
procedure ExpandAESKeyForDecryption(const Key: TAESKey192;
  var ExpandedKey: TAESExpandedKey192); overload;

procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey256); overload;
procedure ExpandAESKeyForDecryption(const Key: TAESKey256;
  var ExpandedKey: TAESExpandedKey256); overload;

// Block decryption routines

procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey128;
  var OutBuf: TAESBuffer); overload;
procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey192;
  var OutBuf: TAESBuffer); overload;
procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey256;
  var OutBuf: TAESBuffer); overload;

// Stream decryption routines (ECB mode)

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey128; Dest: TStream); overload;
procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128; Dest: TStream); overload;

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey192; Dest: TStream); overload;
procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192; Dest: TStream); overload;

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey256; Dest: TStream); overload;
procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256; Dest: TStream); overload;

// Stream decryption routines (CBC mode)

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey128; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128;  const InitVector: TAESBuffer;
  Dest: TStream); overload;

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey192; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192;  const InitVector: TAESBuffer;
  Dest: TStream); overload;

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey256; const InitVector: TAESBuffer; Dest: TStream); overload;
procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256;  const InitVector: TAESBuffer;
  Dest: TStream); overload;

resourcestring
  SInvalidInBufSize = 'Invalid buffer size for decryption';
  SReadError = 'Stream read error';
  SWriteError = 'Stream write error';

implementation

type
  PLongWord = ^LongWord;

function Min(A, B: integer): integer;
begin
  if A < B then
    Result := A
  else
    Result := B;
end;

const
  Rcon: array [1..30] of longword = (
    $00000001, $00000002, $00000004, $00000008, $00000010, $00000020,
    $00000040, $00000080, $0000001B, $00000036, $0000006C, $000000D8,
    $000000AB, $0000004D, $0000009A, $0000002F, $0000005E, $000000BC,
    $00000063, $000000C6, $00000097, $00000035, $0000006A, $000000D4,
    $000000B3, $0000007D, $000000FA, $000000EF, $000000C5, $00000091
  );

  ForwardTable: array [0..255] of longword = (
    $A56363C6, $847C7CF8, $997777EE, $8D7B7BF6, $0DF2F2FF, $BD6B6BD6, $B16F6FDE, $54C5C591,
    $50303060, $03010102, $A96767CE, $7D2B2B56, $19FEFEE7, $62D7D7B5, $E6ABAB4D, $9A7676EC,
    $45CACA8F, $9D82821F, $40C9C989, $877D7DFA, $15FAFAEF, $EB5959B2, $C947478E, $0BF0F0FB,
    $ECADAD41, $67D4D4B3, $FDA2A25F, $EAAFAF45, $BF9C9C23, $F7A4A453, $967272E4, $5BC0C09B,
    $C2B7B775, $1CFDFDE1, $AE93933D, $6A26264C, $5A36366C, $413F3F7E, $02F7F7F5, $4FCCCC83,
    $5C343468, $F4A5A551, $34E5E5D1, $08F1F1F9, $937171E2, $73D8D8AB, $53313162, $3F15152A,
    $0C040408, $52C7C795, $65232346, $5EC3C39D, $28181830, $A1969637, $0F05050A, $B59A9A2F,
    $0907070E, $36121224, $9B80801B, $3DE2E2DF, $26EBEBCD, $6927274E, $CDB2B27F, $9F7575EA,
    $1B090912, $9E83831D, $742C2C58, $2E1A1A34, $2D1B1B36, $B26E6EDC, $EE5A5AB4, $FBA0A05B,
    $F65252A4, $4D3B3B76, $61D6D6B7, $CEB3B37D, $7B292952, $3EE3E3DD, $712F2F5E, $97848413,
    $F55353A6, $68D1D1B9, $00000000, $2CEDEDC1, $60202040, $1FFCFCE3, $C8B1B179, $ED5B5BB6,
    $BE6A6AD4, $46CBCB8D, $D9BEBE67, $4B393972, $DE4A4A94, $D44C4C98, $E85858B0, $4ACFCF85,
    $6BD0D0BB, $2AEFEFC5, $E5AAAA4F, $16FBFBED, $C5434386, $D74D4D9A, $55333366, $94858511,
    $CF45458A, $10F9F9E9, $06020204, $817F7FFE, $F05050A0, $443C3C78, $BA9F9F25, $E3A8A84B,
    $F35151A2, $FEA3A35D, $C0404080, $8A8F8F05, $AD92923F, $BC9D9D21, $48383870, $04F5F5F1,
    $DFBCBC63, $C1B6B677, $75DADAAF, $63212142, $30101020, $1AFFFFE5, $0EF3F3FD, $6DD2D2BF,
    $4CCDCD81, $140C0C18, $35131326, $2FECECC3, $E15F5FBE, $A2979735, $CC444488, $3917172E,
    $57C4C493, $F2A7A755, $827E7EFC, $473D3D7A, $AC6464C8, $E75D5DBA, $2B191932, $957373E6,
    $A06060C0, $98818119, $D14F4F9E, $7FDCDCA3, $66222244, $7E2A2A54, $AB90903B, $8388880B,
    $CA46468C, $29EEEEC7, $D3B8B86B, $3C141428, $79DEDEA7, $E25E5EBC, $1D0B0B16, $76DBDBAD,
    $3BE0E0DB, $56323264, $4E3A3A74, $1E0A0A14, $DB494992, $0A06060C, $6C242448, $E45C5CB8,
    $5DC2C29F, $6ED3D3BD, $EFACAC43, $A66262C4, $A8919139, $A4959531, $37E4E4D3, $8B7979F2,
    $32E7E7D5, $43C8C88B, $5937376E, $B76D6DDA, $8C8D8D01, $64D5D5B1, $D24E4E9C, $E0A9A949,
    $B46C6CD8, $FA5656AC, $07F4F4F3, $25EAEACF, $AF6565CA, $8E7A7AF4, $E9AEAE47, $18080810,
    $D5BABA6F, $887878F0, $6F25254A, $722E2E5C, $241C1C38, $F1A6A657, $C7B4B473, $51C6C697,
    $23E8E8CB, $7CDDDDA1, $9C7474E8, $211F1F3E, $DD4B4B96, $DCBDBD61, $868B8B0D, $858A8A0F,
    $907070E0, $423E3E7C, $C4B5B571, $AA6666CC, $D8484890, $05030306, $01F6F6F7, $120E0E1C,
    $A36161C2, $5F35356A, $F95757AE, $D0B9B969, $91868617, $58C1C199, $271D1D3A, $B99E9E27,
    $38E1E1D9, $13F8F8EB, $B398982B, $33111122, $BB6969D2, $70D9D9A9, $898E8E07, $A7949433,
    $B69B9B2D, $221E1E3C, $92878715, $20E9E9C9, $49CECE87, $FF5555AA, $78282850, $7ADFDFA5,
    $8F8C8C03, $F8A1A159, $80898909, $170D0D1A, $DABFBF65, $31E6E6D7, $C6424284, $B86868D0,
    $C3414182, $B0999929, $772D2D5A, $110F0F1E, $CBB0B07B, $FC5454A8, $D6BBBB6D, $3A16162C
  );

  LastForwardTable: array [0..255] of longword = (
    $00000063, $0000007C, $00000077, $0000007B, $000000F2, $0000006B, $0000006F, $000000C5,
    $00000030, $00000001, $00000067, $0000002B, $000000FE, $000000D7, $000000AB, $00000076,
    $000000CA, $00000082, $000000C9, $0000007D, $000000FA, $00000059, $00000047, $000000F0,
    $000000AD, $000000D4, $000000A2, $000000AF, $0000009C, $000000A4, $00000072, $000000C0,
    $000000B7, $000000FD, $00000093, $00000026, $00000036, $0000003F, $000000F7, $000000CC,
    $00000034, $000000A5, $000000E5, $000000F1, $00000071, $000000D8, $00000031, $00000015,
    $00000004, $000000C7, $00000023, $000000C3, $00000018, $00000096, $00000005, $0000009A,
    $00000007, $00000012, $00000080, $000000E2, $000000EB, $00000027, $000000B2, $00000075,
    $00000009, $00000083, $0000002C, $0000001A, $0000001B, $0000006E, $0000005A, $000000A0,
    $00000052, $0000003B, $000000D6, $000000B3, $00000029, $000000E3, $0000002F, $00000084,
    $00000053, $000000D1, $00000000, $000000ED, $00000020, $000000FC, $000000B1, $0000005B,
    $0000006A, $000000CB, $000000BE, $00000039, $0000004A, $0000004C, $00000058, $000000CF,
    $000000D0, $000000EF, $000000AA, $000000FB, $00000043, $0000004D, $00000033, $00000085,
    $00000045, $000000F9, $00000002, $0000007F, $00000050, $0000003C, $0000009F, $000000A8,
    $00000051, $000000A3, $00000040, $0000008F, $00000092, $0000009D, $00000038, $000000F5,
    $000000BC, $000000B6, $000000DA, $00000021, $00000010, $000000FF, $000000F3, $000000D2,
    $000000CD, $0000000C, $00000013, $000000EC, $0000005F, $00000097, $00000044, $00000017,
    $000000C4, $000000A7, $0000007E, $0000003D, $00000064, $0000005D, $00000019, $00000073,
    $00000060, $00000081, $0000004F, $000000DC, $00000022, $0000002A, $00000090, $00000088,
    $00000046, $000000EE, $000000B8, $00000014, $000000DE, $0000005E, $0000000B, $000000DB,
    $000000E0, $00000032, $0000003A, $0000000A, $00000049, $00000006, $00000024, $0000005C,
    $000000C2, $000000D3, $000000AC, $00000062, $00000091, $00000095, $000000E4, $00000079,
    $000000E7, $000000C8, $00000037, $0000006D, $0000008D, $000000D5, $0000004E, $000000A9,
    $0000006C, $00000056, $000000F4, $000000EA, $00000065, $0000007A, $000000AE, $00000008,
    $000000BA, $00000078, $00000025, $0000002E, $0000001C, $000000A6, $000000B4, $000000C6,
    $000000E8, $000000DD, $00000074, $0000001F, $0000004B, $000000BD, $0000008B, $0000008A,
    $00000070, $0000003E, $000000B5, $00000066, $00000048, $00000003, $000000F6, $0000000E,
    $00000061, $00000035, $00000057, $000000B9, $00000086, $000000C1, $0000001D, $0000009E,
    $000000E1, $000000F8, $00000098, $00000011, $00000069, $000000D9, $0000008E, $00000094,
    $0000009B, $0000001E, $00000087, $000000E9, $000000CE, $00000055, $00000028, $000000DF,
    $0000008C, $000000A1, $00000089, $0000000D, $000000BF, $000000E6, $00000042, $00000068,
    $00000041, $00000099, $0000002D, $0000000F, $000000B0, $00000054, $000000BB, $00000016
  );

  InverseTable: array [0..255] of longword = (
    $50A7F451, $5365417E, $C3A4171A, $965E273A, $CB6BAB3B, $F1459D1F, $AB58FAAC, $9303E34B,
    $55FA3020, $F66D76AD, $9176CC88, $254C02F5, $FCD7E54F, $D7CB2AC5, $80443526, $8FA362B5,
    $495AB1DE, $671BBA25, $980EEA45, $E1C0FE5D, $02752FC3, $12F04C81, $A397468D, $C6F9D36B,
    $E75F8F03, $959C9215, $EB7A6DBF, $DA595295, $2D83BED4, $D3217458, $2969E049, $44C8C98E,
    $6A89C275, $78798EF4, $6B3E5899, $DD71B927, $B64FE1BE, $17AD88F0, $66AC20C9, $B43ACE7D,
    $184ADF63, $82311AE5, $60335197, $457F5362, $E07764B1, $84AE6BBB, $1CA081FE, $942B08F9,
    $58684870, $19FD458F, $876CDE94, $B7F87B52, $23D373AB, $E2024B72, $578F1FE3, $2AAB5566,
    $0728EBB2, $03C2B52F, $9A7BC586, $A50837D3, $F2872830, $B2A5BF23, $BA6A0302, $5C8216ED,
    $2B1CCF8A, $92B479A7, $F0F207F3, $A1E2694E, $CDF4DA65, $D5BE0506, $1F6234D1, $8AFEA6C4,
    $9D532E34, $A055F3A2, $32E18A05, $75EBF6A4, $39EC830B, $AAEF6040, $069F715E, $51106EBD,
    $F98A213E, $3D06DD96, $AE053EDD, $46BDE64D, $B58D5491, $055DC471, $6FD40604, $FF155060,
    $24FB9819, $97E9BDD6, $CC434089, $779ED967, $BD42E8B0, $888B8907, $385B19E7, $DBEEC879,
    $470A7CA1, $E90F427C, $C91E84F8, $00000000, $83868009, $48ED2B32, $AC70111E, $4E725A6C,
    $FBFF0EFD, $5638850F, $1ED5AE3D, $27392D36, $64D90F0A, $21A65C68, $D1545B9B, $3A2E3624,
    $B1670A0C, $0FE75793, $D296EEB4, $9E919B1B, $4FC5C080, $A220DC61, $694B775A, $161A121C,
    $0ABA93E2, $E52AA0C0, $43E0223C, $1D171B12, $0B0D090E, $ADC78BF2, $B9A8B62D, $C8A91E14,
    $8519F157, $4C0775AF, $BBDD99EE, $FD607FA3, $9F2601F7, $BCF5725C, $C53B6644, $347EFB5B,
    $7629438B, $DCC623CB, $68FCEDB6, $63F1E4B8, $CADC31D7, $10856342, $40229713, $2011C684,
    $7D244A85, $F83DBBD2, $1132F9AE, $6DA129C7, $4B2F9E1D, $F330B2DC, $EC52860D, $D0E3C177,
    $6C16B32B, $99B970A9, $FA489411, $2264E947, $C48CFCA8, $1A3FF0A0, $D82C7D56, $EF903322,
    $C74E4987, $C1D138D9, $FEA2CA8C, $360BD498, $CF81F5A6, $28DE7AA5, $268EB7DA, $A4BFAD3F,
    $E49D3A2C, $0D927850, $9BCC5F6A, $62467E54, $C2138DF6, $E8B8D890, $5EF7392E, $F5AFC382,
    $BE805D9F, $7C93D069, $A92DD56F, $B31225CF, $3B99ACC8, $A77D1810, $6E639CE8, $7BBB3BDB,
    $097826CD, $F418596E, $01B79AEC, $A89A4F83, $656E95E6, $7EE6FFAA, $08CFBC21, $E6E815EF,
    $D99BE7BA, $CE366F4A, $D4099FEA, $D67CB029, $AFB2A431, $31233F2A, $3094A5C6, $C066A235,
    $37BC4E74, $A6CA82FC, $B0D090E0, $15D8A733, $4A9804F1, $F7DAEC41, $0E50CD7F, $2FF69117,
    $8DD64D76, $4DB0EF43, $544DAACC, $DF0496E4, $E3B5D19E, $1B886A4C, $B81F2CC1, $7F516546,
    $04EA5E9D, $5D358C01, $737487FA, $2E410BFB, $5A1D67B3, $52D2DB92, $335610E9, $1347D66D,
    $8C61D79A, $7A0CA137, $8E14F859, $893C13EB, $EE27A9CE, $35C961B7, $EDE51CE1, $3CB1477A,
    $59DFD29C, $3F73F255, $79CE1418, $BF37C773, $EACDF753, $5BAAFD5F, $146F3DDF, $86DB4478,
    $81F3AFCA, $3EC468B9, $2C342438, $5F40A3C2, $72C31D16, $0C25E2BC, $8B493C28, $41950DFF,
    $7101A839, $DEB30C08, $9CE4B4D8, $90C15664, $6184CB7B, $70B632D5, $745C6C48, $4257B8D0
  );

  LastInverseTable: array [0..255] of longword = (
    $00000052, $00000009, $0000006A, $000000D5, $00000030, $00000036, $000000A5, $00000038,
    $000000BF, $00000040, $000000A3, $0000009E, $00000081, $000000F3, $000000D7, $000000FB,
    $0000007C, $000000E3, $00000039, $00000082, $0000009B, $0000002F, $000000FF, $00000087,
    $00000034, $0000008E, $00000043, $00000044, $000000C4, $000000DE, $000000E9, $000000CB,
    $00000054, $0000007B, $00000094, $00000032, $000000A6, $000000C2, $00000023, $0000003D,
    $000000EE, $0000004C, $00000095, $0000000B, $00000042, $000000FA, $000000C3, $0000004E,
    $00000008, $0000002E, $000000A1, $00000066, $00000028, $000000D9, $00000024, $000000B2,
    $00000076, $0000005B, $000000A2, $00000049, $0000006D, $0000008B, $000000D1, $00000025,
    $00000072, $000000F8, $000000F6, $00000064, $00000086, $00000068, $00000098, $00000016,
    $000000D4, $000000A4, $0000005C, $000000CC, $0000005D, $00000065, $000000B6, $00000092,
    $0000006C, $00000070, $00000048, $00000050, $000000FD, $000000ED, $000000B9, $000000DA,
    $0000005E, $00000015, $00000046, $00000057, $000000A7, $0000008D, $0000009D, $00000084,
    $00000090, $000000D8, $000000AB, $00000000, $0000008C, $000000BC, $000000D3, $0000000A,
    $000000F7, $000000E4, $00000058, $00000005, $000000B8, $000000B3, $00000045, $00000006,
    $000000D0, $0000002C, $0000001E, $0000008F, $000000CA, $0000003F, $0000000F, $00000002,
    $000000C1, $000000AF, $000000BD, $00000003, $00000001, $00000013, $0000008A, $0000006B,
    $0000003A, $00000091, $00000011, $00000041, $0000004F, $00000067, $000000DC, $000000EA,
    $00000097, $000000F2, $000000CF, $000000CE, $000000F0, $000000B4, $000000E6, $00000073,
    $00000096, $000000AC, $00000074, $00000022, $000000E7, $000000AD, $00000035, $00000085,
    $000000E2, $000000F9, $00000037, $000000E8, $0000001C, $00000075, $000000DF, $0000006E,
    $00000047, $000000F1, $0000001A, $00000071, $0000001D, $00000029, $000000C5, $00000089,
    $0000006F, $000000B7, $00000062, $0000000E, $000000AA, $00000018, $000000BE, $0000001B,
    $000000FC, $00000056, $0000003E, $0000004B, $000000C6, $000000D2, $00000079, $00000020,
    $0000009A, $000000DB, $000000C0, $000000FE, $00000078, $000000CD, $0000005A, $000000F4,
    $0000001F, $000000DD, $000000A8, $00000033, $00000088, $00000007, $000000C7, $00000031,
    $000000B1, $00000012, $00000010, $00000059, $00000027, $00000080, $000000EC, $0000005F,
    $00000060, $00000051, $0000007F, $000000A9, $00000019, $000000B5, $0000004A, $0000000D,
    $0000002D, $000000E5, $0000007A, $0000009F, $00000093, $000000C9, $0000009C, $000000EF,
    $000000A0, $000000E0, $0000003B, $0000004D, $000000AE, $0000002A, $000000F5, $000000B0,
    $000000C8, $000000EB, $000000BB, $0000003C, $00000083, $00000053, $00000099, $00000061,
    $00000017, $0000002B, $00000004, $0000007E, $000000BA, $00000077, $000000D6, $00000026,
    $000000E1, $00000069, $00000014, $00000063, $00000055, $00000021, $0000000C, $0000007D
  );

procedure ExpandAESKeyForEncryption(const Key: TAESKey128; var ExpandedKey: TAESExpandedKey128);
var
  I, J: integer;
  T: longword;
  W0, W1, W2, W3: longword;
begin
  ExpandedKey[0] := PLongWord(@Key[0])^;
  ExpandedKey[1] := PLongWord(@Key[4])^;
  ExpandedKey[2] := PLongWord(@Key[8])^;
  ExpandedKey[3] := PLongWord(@Key[12])^;
  I := 0; J := 1;
  repeat
    T := (ExpandedKey[I + 3] shl 24) or (ExpandedKey[I + 3] shr 8);
    W0 := LastForwardTable[Byte(T)]; W1 := LastForwardTable[Byte(T shr 8)];
    W2 := LastForwardTable[Byte(T shr 16)]; W3 := LastForwardTable[Byte(T shr 24)];
    ExpandedKey[I + 4] := ExpandedKey[I] xor
      (W0 xor ((W1 shl 8) or (W1 shr 24)) xor
      ((W2 shl 16) or (W2 shr 16)) xor ((W3 shl 24) or (W3 shr 8))) xor Rcon[J];
    Inc(J);
    ExpandedKey[I + 5] := ExpandedKey[I + 1] xor ExpandedKey[I + 4];
    ExpandedKey[I + 6] := ExpandedKey[I + 2] xor ExpandedKey[I + 5];
    ExpandedKey[I + 7] := ExpandedKey[I + 3] xor ExpandedKey[I + 6];
    Inc(I, 4);
  until I >= 40;
end;

procedure ExpandAESKeyForEncryption(const Key: TAESKey192; var ExpandedKey: TAESExpandedKey192); overload;
var
  I, J: integer;
  T: longword;
  W0, W1, W2, W3: longword;
begin
  ExpandedKey[0] := PLongWord(@Key[0])^;
  ExpandedKey[1] := PLongWord(@Key[4])^;
  ExpandedKey[2] := PLongWord(@Key[8])^;
  ExpandedKey[3] := PLongWord(@Key[12])^;
  ExpandedKey[4] := PLongWord(@Key[16])^;
  ExpandedKey[5] := PLongWord(@Key[20])^;
  I := 0; J := 1;
  repeat
    T := (ExpandedKey[I + 5] shl 24) or (ExpandedKey[I + 5] shr 8);
    W0 := LastForwardTable[Byte(T)]; W1 := LastForwardTable[Byte(T shr 8)];
    W2 := LastForwardTable[Byte(T shr 16)]; W3 := LastForwardTable[Byte(T shr 24)];
    ExpandedKey[I + 6] := ExpandedKey[I] xor
      (W0 xor ((W1 shl 8) or (W1 shr 24)) xor
      ((W2 shl 16) or (W2 shr 16)) xor ((W3 shl 24) or (W3 shr 8))) xor Rcon[J];
    Inc(J);
    ExpandedKey[I + 7] := ExpandedKey[I + 1] xor ExpandedKey[I + 6];
    ExpandedKey[I + 8] := ExpandedKey[I + 2] xor ExpandedKey[I + 7];
    ExpandedKey[I + 9] := ExpandedKey[I + 3] xor ExpandedKey[I + 8];
    ExpandedKey[I + 10] := ExpandedKey[I + 4] xor ExpandedKey[I + 9];
    ExpandedKey[I + 11] := ExpandedKey[I + 5] xor ExpandedKey[I + 10];
    Inc(I, 6);
  until I >= 46;
end;

procedure ExpandAESKeyForEncryption(const Key: TAESKey256; var ExpandedKey: TAESExpandedKey256); overload;
var
  I, J: integer;
  T: longword;
  W0, W1, W2, W3: longword;
begin
  ExpandedKey[0] := PLongWord(@Key[0])^;
  ExpandedKey[1] := PLongWord(@Key[4])^;
  ExpandedKey[2] := PLongWord(@Key[8])^;
  ExpandedKey[3] := PLongWord(@Key[12])^;
  ExpandedKey[4] := PLongWord(@Key[16])^;
  ExpandedKey[5] := PLongWord(@Key[20])^;
  ExpandedKey[6] := PLongWord(@Key[24])^;
  ExpandedKey[7] := PLongWord(@Key[28])^;
  I := 0; J := 1;
  repeat
    T := (ExpandedKey[I + 7] shl 24) or (ExpandedKey[I + 7] shr 8);
    W0 := LastForwardTable[Byte(T)]; W1 := LastForwardTable[Byte(T shr 8)];
    W2 := LastForwardTable[Byte(T shr 16)]; W3 := LastForwardTable[Byte(T shr 24)];
    ExpandedKey[I + 8] := ExpandedKey[I] xor
      (W0 xor ((W1 shl 8) or (W1 shr 24)) xor
      ((W2 shl 16) or (W2 shr 16)) xor ((W3 shl 24) or (W3 shr 8))) xor Rcon[J];
    Inc(J);
    ExpandedKey[I + 9] := ExpandedKey[I + 1] xor ExpandedKey[I + 8];
    ExpandedKey[I + 10] := ExpandedKey[I + 2] xor ExpandedKey[I + 9];
    ExpandedKey[I + 11] := ExpandedKey[I + 3] xor ExpandedKey[I + 10];
    W0 := LastForwardTable[Byte(ExpandedKey[I + 11])];
    W1 := LastForwardTable[Byte(ExpandedKey[I + 11] shr 8)];
    W2 := LastForwardTable[Byte(ExpandedKey[I + 11] shr 16)];
    W3 := LastForwardTable[Byte(ExpandedKey[I + 11] shr 24)];
    ExpandedKey[I + 12] := ExpandedKey[I + 4] xor
      (W0 xor ((W1 shl 8) or (W1 shr 24)) xor
      ((W2 shl 16) or (W2 shr 16)) xor ((W3 shl 24) or (W3 shr 8)));
    ExpandedKey[I + 13] := ExpandedKey[I + 5] xor ExpandedKey[I + 12];
    ExpandedKey[I + 14] := ExpandedKey[I + 6] xor ExpandedKey[I + 13];
    ExpandedKey[I + 15] := ExpandedKey[I + 7] xor ExpandedKey[I + 14];
    Inc(I, 8);
  until I >= 52;
end;

procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey128;
  var OutBuf: TAESBuffer); 
var
  T0, T1: array [0..3] of longword;
  W0, W1, W2, W3: longword;
begin
  // initializing
  T0[0] := PLongWord(@InBuf[0])^ xor Key[0];
  T0[1] := PLongWord(@InBuf[4])^ xor Key[1];
  T0[2] := PLongWord(@InBuf[8])^ xor Key[2];
  T0[3] := PLongWord(@InBuf[12])^ xor Key[3];
  // performing transformation 9 times
  // round 1
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
  // round 2
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
  // round 3
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
  // round 4
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
  // round 5
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
  // round 6
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
  // round 7
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
  // round 8
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
  // round 9
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
  // last round of transformations
  W0 := LastForwardTable[Byte(T1[0])]; W1 := LastForwardTable[Byte(T1[1] shr 8)];
  W2 := LastForwardTable[Byte(T1[2] shr 16)]; W3 := LastForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[40];
  W0 := LastForwardTable[Byte(T1[1])]; W1 := LastForwardTable[Byte(T1[2] shr 8)];
  W2 := LastForwardTable[Byte(T1[3] shr 16)]; W3 := LastForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[41];
  W0 := LastForwardTable[Byte(T1[2])]; W1 := LastForwardTable[Byte(T1[3] shr 8)];
  W2 := LastForwardTable[Byte(T1[0] shr 16)]; W3 := LastForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[42];
  W0 := LastForwardTable[Byte(T1[3])]; W1 := LastForwardTable[Byte(T1[0] shr 8)];
  W2 := LastForwardTable[Byte(T1[1] shr 16)]; W3 := LastForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[43];
  // finalizing
  PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
  PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;

procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey192;
  var OutBuf: TAESBuffer);
var
  T0, T1: array [0..3] of longword;
  W0, W1, W2, W3: longword;
begin
  // initializing
  T0[0] := PLongWord(@InBuf[0])^ xor Key[0];
  T0[1] := PLongWord(@InBuf[4])^ xor Key[1];
  T0[2] := PLongWord(@InBuf[8])^ xor Key[2];
  T0[3] := PLongWord(@InBuf[12])^ xor Key[3];
  // performing transformation 11 times
  // round 1
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
  // round 2
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
  // round 3
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
  // round 4
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
  // round 5
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
  // round 6
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
  // round 7
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
  // round 8
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
  // round 9
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
  // round 10
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[40];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[41];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[42];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[43];
  // round 11
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[44];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[45];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[46];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[47];
  // last round of transformations
  W0 := LastForwardTable[Byte(T1[0])]; W1 := LastForwardTable[Byte(T1[1] shr 8)];
  W2 := LastForwardTable[Byte(T1[2] shr 16)]; W3 := LastForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[48];
  W0 := LastForwardTable[Byte(T1[1])]; W1 := LastForwardTable[Byte(T1[2] shr 8)];
  W2 := LastForwardTable[Byte(T1[3] shr 16)]; W3 := LastForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[49];
  W0 := LastForwardTable[Byte(T1[2])]; W1 := LastForwardTable[Byte(T1[3] shr 8)];
  W2 := LastForwardTable[Byte(T1[0] shr 16)]; W3 := LastForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[50];
  W0 := LastForwardTable[Byte(T1[3])]; W1 := LastForwardTable[Byte(T1[0] shr 8)];
  W2 := LastForwardTable[Byte(T1[1] shr 16)]; W3 := LastForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[51];
  // finalizing
  PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
  PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;

procedure EncryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey256;
  var OutBuf: TAESBuffer);
var
  T0, T1: array [0..3] of longword;
  W0, W1, W2, W3: longword;
begin
  // initializing
  T0[0] := PLongWord(@InBuf[0])^ xor Key[0];
  T0[1] := PLongWord(@InBuf[4])^ xor Key[1];
  T0[2] := PLongWord(@InBuf[8])^ xor Key[2];
  T0[3] := PLongWord(@InBuf[12])^ xor Key[3];
  // performing transformation 13 times
  // round 1
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
  // round 2
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
  // round 3
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
  // round 4
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
  // round 5
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
  // round 6
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
  // round 7
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
  // round 8
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
  // round 9
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
  // round 10
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[40];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[41];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[42];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[43];
  // round 11
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[44];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[45];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[46];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[47];
  // round 12
  W0 := ForwardTable[Byte(T1[0])]; W1 := ForwardTable[Byte(T1[1] shr 8)];
  W2 := ForwardTable[Byte(T1[2] shr 16)]; W3 := ForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[48];
  W0 := ForwardTable[Byte(T1[1])]; W1 := ForwardTable[Byte(T1[2] shr 8)];
  W2 := ForwardTable[Byte(T1[3] shr 16)]; W3 := ForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[49];
  W0 := ForwardTable[Byte(T1[2])]; W1 := ForwardTable[Byte(T1[3] shr 8)];
  W2 := ForwardTable[Byte(T1[0] shr 16)]; W3 := ForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[50];
  W0 := ForwardTable[Byte(T1[3])]; W1 := ForwardTable[Byte(T1[0] shr 8)];
  W2 := ForwardTable[Byte(T1[1] shr 16)]; W3 := ForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[51];
  // round 13
  W0 := ForwardTable[Byte(T0[0])]; W1 := ForwardTable[Byte(T0[1] shr 8)];
  W2 := ForwardTable[Byte(T0[2] shr 16)]; W3 := ForwardTable[Byte(T0[3] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[52];
  W0 := ForwardTable[Byte(T0[1])]; W1 := ForwardTable[Byte(T0[2] shr 8)];
  W2 := ForwardTable[Byte(T0[3] shr 16)]; W3 := ForwardTable[Byte(T0[0] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[53];
  W0 := ForwardTable[Byte(T0[2])]; W1 := ForwardTable[Byte(T0[3] shr 8)];
  W2 := ForwardTable[Byte(T0[0] shr 16)]; W3 := ForwardTable[Byte(T0[1] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[54];
  W0 := ForwardTable[Byte(T0[3])]; W1 := ForwardTable[Byte(T0[0] shr 8)];
  W2 := ForwardTable[Byte(T0[1] shr 16)]; W3 := ForwardTable[Byte(T0[2] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[55];
  // last round of transformations
  W0 := LastForwardTable[Byte(T1[0])]; W1 := LastForwardTable[Byte(T1[1] shr 8)];
  W2 := LastForwardTable[Byte(T1[2] shr 16)]; W3 := LastForwardTable[Byte(T1[3] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[56];
  W0 := LastForwardTable[Byte(T1[1])]; W1 := LastForwardTable[Byte(T1[2] shr 8)];
  W2 := LastForwardTable[Byte(T1[3] shr 16)]; W3 := LastForwardTable[Byte(T1[0] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[57];
  W0 := LastForwardTable[Byte(T1[2])]; W1 := LastForwardTable[Byte(T1[3] shr 8)];
  W2 := LastForwardTable[Byte(T1[0] shr 16)]; W3 := LastForwardTable[Byte(T1[1] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[58];
  W0 := LastForwardTable[Byte(T1[3])]; W1 := LastForwardTable[Byte(T1[0] shr 8)];
  W2 := LastForwardTable[Byte(T1[1] shr 16)]; W3 := LastForwardTable[Byte(T1[2] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[59];
  // finalizing
  PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
  PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;

procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey128);
var
  I: integer;
  U, F2, F4, F8, F9: longword;
begin
  for I := 1 to 9 do
  begin
    F9 := ExpandedKey[I * 4];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 1];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 1] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 2];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 2] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 3];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 3] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
  end;
end;

procedure ExpandAESKeyForDecryption(const Key: TAESKey128; var ExpandedKey: TAESExpandedKey128);
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  ExpandAESKeyForDecryption(ExpandedKey);
end;

procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey192);
var
  I: integer;
  U, F2, F4, F8, F9: longword;
begin
  for I := 1 to 11 do
  begin
    F9 := ExpandedKey[I * 4];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 1];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 1] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 2];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 2] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 3];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 3] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
  end;
end;

procedure ExpandAESKeyForDecryption(const Key: TAESKey192; var ExpandedKey: TAESExpandedKey192);
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  ExpandAESKeyForDecryption(ExpandedKey);
end;

procedure ExpandAESKeyForDecryption(var ExpandedKey: TAESExpandedKey256);
var
  I: integer;
  U, F2, F4, F8, F9: longword;
begin
  for I := 1 to 13 do
  begin
    F9 := ExpandedKey[I * 4];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 1];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 1] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 2];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 2] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
    F9 := ExpandedKey[I * 4 + 3];
    U := F9 and $80808080;
    F2 := ((F9 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F2 and $80808080;
    F4 := ((F2 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    U := F4 and $80808080;
    F8 := ((F4 and $7F7F7F7F) shl 1) xor ((U - (U shr 7)) and $1B1B1B1B);
    F9 := F9 xor F8;
    ExpandedKey[I * 4 + 3] := F2 xor F4 xor F8 xor
      (((F2 xor F9) shl 24) or ((F2 xor F9) shr 8)) xor
      (((F4 xor F9) shl 16) or ((F4 xor F9) shr 16)) xor ((F9 shl 8) or (F9 shr 24));
  end;
end;

procedure ExpandAESKeyForDecryption(const Key: TAESKey256; var ExpandedKey: TAESExpandedKey256);
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  ExpandAESKeyForDecryption(ExpandedKey);
end;

procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey128;
  var OutBuf: TAESBuffer);
var
  T0, T1: array [0..3] of longword;
  W0, W1, W2, W3: longword;
begin
  // initializing
  T0[0] := PLongWord(@InBuf[0])^ xor Key[40];
  T0[1] := PLongWord(@InBuf[4])^ xor Key[41];
  T0[2] := PLongWord(@InBuf[8])^ xor Key[42];
  T0[3] := PLongWord(@InBuf[12])^ xor Key[43];
  // performing transformations 9 times
  // round 1
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
  // round 2
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
  // round 3
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
  // round 4
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
  // round 5
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
  // round 6
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
  // round 7
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
  // round 8
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
  // round 9
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
  // last round of transformations
  W0 := LastInverseTable[Byte(T1[0])]; W1 := LastInverseTable[Byte(T1[3] shr 8)];
  W2 := LastInverseTable[Byte(T1[2] shr 16)]; W3 := LastInverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[0];
  W0 := LastInverseTable[Byte(T1[1])]; W1 := LastInverseTable[Byte(T1[0] shr 8)];
  W2 := LastInverseTable[Byte(T1[3] shr 16)]; W3 := LastInverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[1];
  W0 := LastInverseTable[Byte(T1[2])]; W1 := LastInverseTable[Byte(T1[1] shr 8)];
  W2 := LastInverseTable[Byte(T1[0] shr 16)]; W3 := LastInverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[2];
  W0 := LastInverseTable[Byte(T1[3])]; W1 := LastInverseTable[Byte(T1[2] shr 8)];
  W2 := LastInverseTable[Byte(T1[1] shr 16)]; W3 := LastInverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[3];
  // finalizing
  PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
  PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;

procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey192;
  var OutBuf: TAESBuffer);
var
  T0, T1: array [0..3] of longword;
  W0, W1, W2, W3: longword;
begin
  // initializing
  T0[0] := PLongWord(@InBuf[0])^ xor Key[48];
  T0[1] := PLongWord(@InBuf[4])^ xor Key[49];
  T0[2] := PLongWord(@InBuf[8])^ xor Key[50];
  T0[3] := PLongWord(@InBuf[12])^ xor Key[51];
  // performing transformations 11 times
  // round 1
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[44];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[45];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[46];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[47];
  // round 2
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[40];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[41];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[42];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[43];
  // round 3
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
  // round 4
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
  // round 5
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
  // round 6
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
  // round 7
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
  // round 8
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
  // round 9
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
  // round 10
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
  // round 11
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
  // last round of transformations
  W0 := LastInverseTable[Byte(T1[0])]; W1 := LastInverseTable[Byte(T1[3] shr 8)];
  W2 := LastInverseTable[Byte(T1[2] shr 16)]; W3 := LastInverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[0];
  W0 := LastInverseTable[Byte(T1[1])]; W1 := LastInverseTable[Byte(T1[0] shr 8)];
  W2 := LastInverseTable[Byte(T1[3] shr 16)]; W3 := LastInverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[1];
  W0 := LastInverseTable[Byte(T1[2])]; W1 := LastInverseTable[Byte(T1[1] shr 8)];
  W2 := LastInverseTable[Byte(T1[0] shr 16)]; W3 := LastInverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[2];
  W0 := LastInverseTable[Byte(T1[3])]; W1 := LastInverseTable[Byte(T1[2] shr 8)];
  W2 := LastInverseTable[Byte(T1[1] shr 16)]; W3 := LastInverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[3];
  // finalizing
  PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
  PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;

procedure DecryptAES(const InBuf: TAESBuffer; const Key: TAESExpandedKey256;
  var OutBuf: TAESBuffer);
var
  T0, T1: array [0..3] of longword;
  W0, W1, W2, W3: longword;
begin
  // initializing
  T0[0] := PLongWord(@InBuf[0])^ xor Key[56];
  T0[1] := PLongWord(@InBuf[4])^ xor Key[57];
  T0[2] := PLongWord(@InBuf[8])^ xor Key[58];
  T0[3] := PLongWord(@InBuf[12])^ xor Key[59];
  // performing transformations 13 times
  // round 1
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[52];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[53];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[54];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[55];
  // round 2
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[48];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[49];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[50];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[51];
  // round 3
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[44];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[45];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[46];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[47];
  // round 4
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[40];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[41];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[42];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[43];
  // round 5
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[36];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[37];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[38];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[39];
  // round 6
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[32];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[33];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[34];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[35];
  // round 7
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[28];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[29];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[30];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[31];
  // round 8
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[24];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[25];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[26];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[27];
  // round 9
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[20];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[21];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[22];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[23];
  // round 10
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[16];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[17];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[18];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[19];
  // round 11
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[12];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[13];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[14];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[15];
  // round 12
  W0 := InverseTable[Byte(T1[0])]; W1 := InverseTable[Byte(T1[3] shr 8)];
  W2 := InverseTable[Byte(T1[2] shr 16)]; W3 := InverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[8];
  W0 := InverseTable[Byte(T1[1])]; W1 := InverseTable[Byte(T1[0] shr 8)];
  W2 := InverseTable[Byte(T1[3] shr 16)]; W3 := InverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[9];
  W0 := InverseTable[Byte(T1[2])]; W1 := InverseTable[Byte(T1[1] shr 8)];
  W2 := InverseTable[Byte(T1[0] shr 16)]; W3 := InverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[10];
  W0 := InverseTable[Byte(T1[3])]; W1 := InverseTable[Byte(T1[2] shr 8)];
  W2 := InverseTable[Byte(T1[1] shr 16)]; W3 := InverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[11];
  // round 13
  W0 := InverseTable[Byte(T0[0])]; W1 := InverseTable[Byte(T0[3] shr 8)];
  W2 := InverseTable[Byte(T0[2] shr 16)]; W3 := InverseTable[Byte(T0[1] shr 24)];
  T1[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[4];
  W0 := InverseTable[Byte(T0[1])]; W1 := InverseTable[Byte(T0[0] shr 8)];
  W2 := InverseTable[Byte(T0[3] shr 16)]; W3 := InverseTable[Byte(T0[2] shr 24)];
  T1[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[5];
  W0 := InverseTable[Byte(T0[2])]; W1 := InverseTable[Byte(T0[1] shr 8)];
  W2 := InverseTable[Byte(T0[0] shr 16)]; W3 := InverseTable[Byte(T0[3] shr 24)];
  T1[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[6];
  W0 := InverseTable[Byte(T0[3])]; W1 := InverseTable[Byte(T0[2] shr 8)];
  W2 := InverseTable[Byte(T0[1] shr 16)]; W3 := InverseTable[Byte(T0[0] shr 24)];
  T1[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[7];
  // last round of transformations
  W0 := LastInverseTable[Byte(T1[0])]; W1 := LastInverseTable[Byte(T1[3] shr 8)];
  W2 := LastInverseTable[Byte(T1[2] shr 16)]; W3 := LastInverseTable[Byte(T1[1] shr 24)];
  T0[0] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[0];
  W0 := LastInverseTable[Byte(T1[1])]; W1 := LastInverseTable[Byte(T1[0] shr 8)];
  W2 := LastInverseTable[Byte(T1[3] shr 16)]; W3 := LastInverseTable[Byte(T1[2] shr 24)];
  T0[1] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[1];
  W0 := LastInverseTable[Byte(T1[2])]; W1 := LastInverseTable[Byte(T1[1] shr 8)];
  W2 := LastInverseTable[Byte(T1[0] shr 16)]; W3 := LastInverseTable[Byte(T1[3] shr 24)];
  T0[2] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[2];
  W0 := LastInverseTable[Byte(T1[3])]; W1 := LastInverseTable[Byte(T1[2] shr 8)];
  W2 := LastInverseTable[Byte(T1[1] shr 16)]; W3 := LastInverseTable[Byte(T1[0] shr 24)];
  T0[3] := (W0 xor ((W1 shl 8) or (W1 shr 24)) xor ((W2 shl 16) or (W2 shr 16))
    xor ((W3 shl 24) or (W3 shr 8))) xor Key[3];
  // finalizing
  PLongWord(@OutBuf[0])^ := T0[0]; PLongWord(@OutBuf[4])^ := T0[1];
  PLongWord(@OutBuf[8])^ := T0[2]; PLongWord(@OutBuf[12])^ := T0[3];
end;

// Stream encryption routines (ECB mode)

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey128; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey128;
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  EncryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey192; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey192;
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  EncryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey256; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey256;
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  EncryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128; Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Dec(Count, SizeOf(TAESBuffer));
  end;
  if Count > 0 then
  begin
    Done := Source.Read(TempIn, Count);
    if Done < Count then
      raise EStreamError.Create(SReadError);
    FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
  end;
end;

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192; Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Dec(Count, SizeOf(TAESBuffer));
  end;
  if Count > 0 then
  begin
    Done := Source.Read(TempIn, Count);
    if Done < Count then
      raise EStreamError.Create(SReadError);
    FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
  end;
end;

procedure EncryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256; Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Dec(Count, SizeOf(TAESBuffer));
  end;
  if Count > 0 then
  begin
    Done := Source.Read(TempIn, Count);
    if Done < Count then
      raise EStreamError.Create(SReadError);
    FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
  end;
end;

// Stream decryption routines (ECB mode)

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey128; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey128;
begin
  ExpandAESKeyForDecryption(Key, ExpandedKey);
  DecryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128; Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  if (Count mod SizeOf(TAESBuffer)) > 0 then
    raise EAESError.Create(SInvalidInBufSize);
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    DecryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Dec(Count, SizeOf(TAESBuffer));
  end;
end;

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey192; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey192;
begin
  ExpandAESKeyForDecryption(Key, ExpandedKey);
  DecryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192; Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  if (Count mod SizeOf(TAESBuffer)) > 0 then
    raise EAESError.Create(SInvalidInBufSize);
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    DecryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Dec(Count, SizeOf(TAESBuffer));
  end;
end;

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const Key: TAESKey256; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey256;
begin
  ExpandAESKeyForDecryption(Key, ExpandedKey);
  DecryptAESStreamECB(Source, Count, ExpandedKey, Dest);
end;

procedure DecryptAESStreamECB(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256; Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  if (Count mod SizeOf(TAESBuffer)) > 0 then
    raise EAESError.Create(SInvalidInBufSize);
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    DecryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Dec(Count, SizeOf(TAESBuffer));
  end;
end;

// Stream encryption routines (CBC mode)

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey128; const InitVector: TAESBuffer; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey128;
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  EncryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128;  const InitVector: TAESBuffer;
  Dest: TStream);
var
  TempIn, TempOut, Vector: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  Vector := InitVector;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
    PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
    PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
    PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Vector := TempOut;
    Dec(Count, SizeOf(TAESBuffer));
  end;
  if Count > 0 then
  begin
    Done := Source.Read(TempIn, Count);
    if Done < Count then
      raise EStreamError.Create(SReadError);
    FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
    PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
    PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
    PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
    PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
  end;
end;

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey192; const InitVector: TAESBuffer; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey192;
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  EncryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192;  const InitVector: TAESBuffer;
  Dest: TStream);
var
  TempIn, TempOut, Vector: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  Vector := InitVector;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
    PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
    PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
    PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Vector := TempOut;
    Dec(Count, SizeOf(TAESBuffer));
  end;
  if Count > 0 then
  begin
    Done := Source.Read(TempIn, Count);
    if Done < Count then
      raise EStreamError.Create(SReadError);
    FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
    PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
    PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
    PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
    PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
  end;
end;

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey256; const InitVector: TAESBuffer; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey256;
begin
  ExpandAESKeyForEncryption(Key, ExpandedKey);
  EncryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;

procedure EncryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256;  const InitVector: TAESBuffer;
  Dest: TStream);
var
  TempIn, TempOut, Vector: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  Vector := InitVector;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError.Create(SReadError);
    PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
    PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
    PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
    PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
    Vector := TempOut;
    Dec(Count, SizeOf(TAESBuffer));
  end;
  if Count > 0 then
  begin
    Done := Source.Read(TempIn, Count);
    if Done < Count then
      raise EStreamError.Create(SReadError);
    FillChar(TempIn[Count], SizeOf(TempIn) - Count, 0);
    PLongWord(@TempIn[0])^ := PLongWord(@TempIn[0])^ xor PLongWord(@Vector[0])^;
    PLongWord(@TempIn[4])^ := PLongWord(@TempIn[4])^ xor PLongWord(@Vector[4])^;
    PLongWord(@TempIn[8])^ := PLongWord(@TempIn[8])^ xor PLongWord(@Vector[8])^;
    PLongWord(@TempIn[12])^ := PLongWord(@TempIn[12])^ xor PLongWord(@Vector[12])^;
    EncryptAES(TempIn, ExpandedKey, TempOut);
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError.Create(SWriteError);
  end;
end;

// Stream decryption routines (CBC mode)

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey128; const InitVector: TAESBuffer; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey128;
begin
  ExpandAESKeyForDecryption(Key, ExpandedKey);
  DecryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey128;  const InitVector: TAESBuffer;
  Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Vector1, Vector2: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  if (Count mod SizeOf(TAESBuffer)) > 0 then
    raise EAESError.Create(SInvalidInBufSize);
  Vector1 := InitVector;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError(SReadError);
    Vector2 := TempIn;
    DecryptAES(TempIn, ExpandedKey, TempOut);
    PLongWord(@TempOut[0])^ := PLongWord(@TempOut[0])^ xor PLongWord(@Vector1[0])^;
    PLongWord(@TempOut[4])^ := PLongWord(@TempOut[4])^ xor PLongWord(@Vector1[4])^;
    PLongWord(@TempOut[8])^ := PLongWord(@TempOut[8])^ xor PLongWord(@Vector1[8])^;
    PLongWord(@TempOut[12])^ := PLongWord(@TempOut[12])^ xor PLongWord(@Vector1[12])^;
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError(SWriteError);
    Vector1 := Vector2;
    Dec(Count, SizeOf(TAESBuffer));
  end;
end;

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey192; const InitVector: TAESBuffer; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey192;
begin
  ExpandAESKeyForDecryption(Key, ExpandedKey);
  DecryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey192;  const InitVector: TAESBuffer;
  Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Vector1, Vector2: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  if (Count mod SizeOf(TAESBuffer)) > 0 then
    raise EAESError.Create(SInvalidInBufSize);
  Vector1 := InitVector;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError(SReadError);
    Vector2 := TempIn;
    DecryptAES(TempIn, ExpandedKey, TempOut);
    PLongWord(@TempOut[0])^ := PLongWord(@TempOut[0])^ xor PLongWord(@Vector1[0])^;
    PLongWord(@TempOut[4])^ := PLongWord(@TempOut[4])^ xor PLongWord(@Vector1[4])^;
    PLongWord(@TempOut[8])^ := PLongWord(@TempOut[8])^ xor PLongWord(@Vector1[8])^;
    PLongWord(@TempOut[12])^ := PLongWord(@TempOut[12])^ xor PLongWord(@Vector1[12])^;
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError(SWriteError);
    Vector1 := Vector2;
    Dec(Count, SizeOf(TAESBuffer));
  end;
end;

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const Key: TAESKey256; const InitVector: TAESBuffer; Dest: TStream);
var
  ExpandedKey: TAESExpandedKey256;
begin
  ExpandAESKeyForDecryption(Key, ExpandedKey);
  DecryptAESStreamCBC(Source, Count, ExpandedKey, InitVector, Dest);
end;

procedure DecryptAESStreamCBC(Source: TStream; Count: cardinal;
  const ExpandedKey: TAESExpandedKey256;  const InitVector: TAESBuffer;
  Dest: TStream);
var
  TempIn, TempOut: TAESBuffer;
  Vector1, Vector2: TAESBuffer;
  Done: cardinal;
begin
  if Count = 0 then
  begin
    Source.Position := 0;
    Count := Source.Size;
  end
  else Count := Min(Count, Source.Size - Source.Position);
  if Count = 0 then exit;
  if (Count mod SizeOf(TAESBuffer)) > 0 then
    raise EAESError.Create(SInvalidInBufSize);
  Vector1 := InitVector;
  while Count >= SizeOf(TAESBuffer) do
  begin
    Done := Source.Read(TempIn, SizeOf(TempIn));
    if Done < SizeOf(TempIn) then
      raise EStreamError(SReadError);
    Vector2 := TempIn;
    DecryptAES(TempIn, ExpandedKey, TempOut);
    PLongWord(@TempOut[0])^ := PLongWord(@TempOut[0])^ xor PLongWord(@Vector1[0])^;
    PLongWord(@TempOut[4])^ := PLongWord(@TempOut[4])^ xor PLongWord(@Vector1[4])^;
    PLongWord(@TempOut[8])^ := PLongWord(@TempOut[8])^ xor PLongWord(@Vector1[8])^;
    PLongWord(@TempOut[12])^ := PLongWord(@TempOut[12])^ xor PLongWord(@Vector1[12])^;
    Done := Dest.Write(TempOut, SizeOf(TempOut));
    if Done < SizeOf(TempOut) then
      raise EStreamError(SWriteError);
    Vector1 := Vector2;
    Dec(Count, SizeOf(TAESBuffer));
  end;
end;

end.

  

Example:

procedure Encrypt(var Buffer: TAESBuffer; Key: TAESKey128);
var
TempBuf: TAESBuffer;
ExpandedKey: TAESExpandedKey128;
begin
ExpandAESKeyForEncryption(Key, ExpandedKey);
EncryptAES(Buffer, ExpandedKey, TempBuf);
Move(TempBuf, Buffer, SizeOf(Buffer));
end;

Block Decryption

To decrypt your ciphered data perform the following steps:

1. If you already have an expanded key produced by an
ExpandAESKeyForEncryption routine, you can call the
ExpandAESKeyForDecryption to produce the corresponding subkeys for
decryption routine. If you don't have an expanded key generated for
encryption procedure, you call another version of
ExpandAESKeyForDecryption which creates an expanded key first and
after that transforms it into a key required by decryption routine.

2. Call the DecryptAES procedure to decrypt a block of data.

Example:

procedure Decrypt(var Buffer: TAESBuffer; Key: TAESKey128);
var
TempBuf: TAESBuffer;
ExpandedKey: TAESExpandedKey128;
begin
ExpandAESKeyForDecryption(Key, ExpandedKey);
DecryptAES(Buffer, ExpandedKey, TempBuf);
Move(TempBuf, Buffer, SizeOf(Buffer));
end;

Stream Processing

The unit provides a number of routines to encrypt or decrypt a stream of
data using ECB and CBC modes. These routines divide a source stream into
blocks of 128 bits each and then encrypt/decrypt those blocks using
block encryption/decryption routines. If the final block is less then
128 bits in size, it will be padded with zeros. If an input stream was
padded with several zero bytes when it has been encrypted, you will
receive these zero bytes in output stream after you decrypt the data.
So, it's very important to restore the original size of source
stream after decryption of such block.

When the stream is encrypted in ECB mode, the 128-bit blocks are
encrypted independently of each other.

CBC mode applies XOR operation on blocks being encrypted in the
following way: first block is XOR-ed with initialization vector and then
encrypted. The second block is XOR-ed with result of encryption of the
first block, third block is XOR-ed with result of encryption of the
second block and so on. To decrypt such stream the receiving party must
have both key and initialization vector.

Stream Encryption

To encrypt a stream of data do the following steps:

1. Choose a key length you will use to encrypt/decrypt the data.

2. Choose a method of stream processing (ECB or CBC).

3. Call the ExpandAESKeyForEncryption routine to get expanded subkeys to
be used by encryption routine. This procedure is available
separately to speed-up entire the proccess if you need to ncrypt
several streams of data using the same key. If you need to eencrypt only
one stream, you can skip this step.

4. Call EncryptAESStreamXXX routine (where XXX means the required
stream processing mode).

Example:

procedure EncryptStream(Source: TStream; Dest: TStream; Key: TAESKey128);
var
Count: integer;
begin
Source.Position := 0;
Count := Source.Size;
Dest.Write(Count, SizeOf(Count)); // store the source stream size to
// restore after decryption
EncryptAESStreamECB(Source, 0, Key, Dest);
end;

Stream Decryption

To decrypt a stream of data do the following steps:
1. Call the ExpandAESKeyForDecryption routine to get expanded keys to
be used by decryption routine. If you need to process only one stream,
you can skip this step.
2. Call the EncryptAESStreamXXX routine (where XXX means the mode which
was used to encrypt the data).

Example:

procedure DecryptStream(Source: TStream; Dest: TStream; Key: TAESKey128);
var
Count: integer;
DPos: integer;
begin
Source.Position := 0;
DPos := Dest.Position;
Source.ReadBuffer(Count, SizeOf(Count)); // read original size of data
// stream
DecryptAESStreamECB(Source, Source.Size - Source.Position, Key, Dest);
Dest.Size := DPos + Count; // restore the original size of data
Dest.Position := DPos;
end;

posted @ 2019-07-09 11:47  小红心复活  阅读(754)  评论(0编辑  收藏  举报