第六学期每周总结-第一周
本周主要完成了Python的继续学习,学习爬取当前的疫情状况,实现疫情状况的绘图展示!
import time import json import requests from datetime import datetime import numpy as np import matplotlib import matplotlib.figure from matplotlib.font_manager import FontProperties from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import matplotlib.dates as mdates plt.rcParams['font.sans-serif'] = ['FangSong'] # 设置默认字体 plt.rcParams['axes.unicode_minus'] = False # 解决保存图像时'-'显示为方块的问题 def catch_daily(): """抓取每日确诊和死亡数据""" url = 'https://view.inews.qq.com/g2/getOnsInfo?name=wuwei_ww_cn_day_counts&callback=&_=%d'%int(time.time()*1000) data = json.loads(requests.get(url=url).json()['data']) data.sort(key=lambda x:x['date']) date_list = list() # 日期 confirm_list = list() # 确诊 suspect_list = list() # 疑似 dead_list = list() # 死亡 heal_list = list() # 治愈 for item in data: month, day = item['date'].split('.') date_list.append(datetime.strptime('2020-%s-%s'%(month, day), '%Y-%m-%d')) confirm_list.append(int(item['confirm'])) suspect_list.append(int(item['suspect'])) dead_list.append(int(item['dead'])) heal_list.append(int(item['heal'])) return date_list, confirm_list, suspect_list, dead_list, heal_list def catch_distribution(): """抓取行政区域确诊分布数据""" data = {'西藏':0} url = 'https://view.inews.qq.com/g2/getOnsInfo?name=wuwei_ww_area_counts&callback=&_=%d'%int(time.time()*1000) for item in json.loads(requests.get(url=url).json()['data']): if item['area'] not in data: data.update({item['area']:0}) data[item['area']] += int(item['confirm']) return data def plot_daily(): """绘制每日确诊和死亡数据""" date_list, confirm_list, suspect_list, dead_list, heal_list = catch_daily() # 获取数据 plt.figure('2019-nCoV疫情统计图表', facecolor='#f4f4f4', figsize=(10, 8)) plt.title('2019-nCoV疫情曲线', fontsize=20) plt.plot(date_list, confirm_list, label='确诊') plt.plot(date_list, suspect_list, label='疑似') plt.plot(date_list, dead_list, label='死亡') plt.plot(date_list, heal_list, label='治愈') plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m-%d')) # 格式化时间轴标注 plt.gcf().autofmt_xdate() # 优化标注(自动倾斜) plt.grid(linestyle=':') # 显示网格 plt.legend(loc='best') # 显示图例 plt.savefig('2019-nCoV疫情曲线.png') # 保存为文件 #plt.show() def plot_distribution(): """绘制行政区域确诊分布数据""" data = catch_distribution() font = FontProperties(fname='res/simsun.ttf', size=14) lat_min = 0 lat_max = 60 lon_min = 70 lon_max = 140 handles = [ matplotlib.patches.Patch(color='#ffaa85', alpha=1, linewidth=0), matplotlib.patches.Patch(color='#ff7b69', alpha=1, linewidth=0), matplotlib.patches.Patch(color='#bf2121', alpha=1, linewidth=0), matplotlib.patches.Patch(color='#7f1818', alpha=1, linewidth=0), ] labels = [ '1-9人', '10-99人', '100-999人', '>1000人'] fig = matplotlib.figure.Figure() fig.set_size_inches(10, 8) # 设置绘图板尺寸 axes = fig.add_axes((0.1, 0.12, 0.8, 0.8)) # rect = l,b,w,h # m = Basemap(llcrnrlon=lon_min, urcrnrlon=lon_max, llcrnrlat=lat_min, urcrnrlat=lat_max, resolution='l', ax=axes) m = Basemap(projection='ortho', lat_0=30, lon_0=105, resolution='l', ax=axes)#正射投影 m.readshapefile('res/china-shapefiles-master/china', 'province', drawbounds=True) m.readshapefile('res/china-shapefiles-master/china_nine_dotted_line', 'section', drawbounds=True) m.drawcoastlines(color='black') # 洲际线 m.drawcountries(color='black') # 国界线 m.drawparallels(np.arange(lat_min,lat_max,10), labels=[1,0,0,0]) #画经度线 m.drawmeridians(np.arange(lon_min,lon_max,10), labels=[0,0,0,1]) #画纬度线 for info, shape in zip(m.province_info, m.province): pname = info['OWNER'].strip('\x00') fcname = info['FCNAME'].strip('\x00') if pname != fcname: # 不绘制海岛 continue for key in data.keys(): if key in pname: if data[key] == 0: color = '#f0f0f0' elif data[key] < 10: color = '#ffaa85' elif data[key] <100: color = '#ff7b69' elif data[key] < 1000: color = '#bf2121' else: color = '#7f1818' break poly = Polygon(shape, facecolor=color, edgecolor=color) axes.add_patch(poly) axes.legend(handles, labels, bbox_to_anchor=(0.5, -0.11), loc='lower center', ncol=4, prop=font) axes.set_title("2019-nCoV疫情地图", fontproperties=font) FigureCanvasAgg(fig) fig.savefig('2019-nCoV疫情地图(正射投影).png') if __name__ == '__main__': plot_daily() plot_distribution()