(Relax 水题1.2)POJ 1032 Parliament(将n分解成若干个互不相等的整数的和,并且是这些整数的乘积最大)

 

题意:给出一个数n,将其拆分为若干个互不相等的数字的和,要求这些数字的乘积最大。

分析:我们可以发现任何一个数字,只要能拆分成两个大于1的数字之和,那么这两个数字的乘积一定大于等于原数。也就是说,对于连乘式中,如果将一个乘数a更换为两个数字b×c(a=b+c且b>1,c>1),那么乘积只可能增大或不变,不会减小。所以我们拆分的原则就是将这些数字拆得尽量小,拆成许多2的乘积是最好的。又因为题目约束各个数字不能相同,则我们拆分的结果最理想的情况是从2开始的公差为1的等差数列。但是有时是无法构成这样的等差数列的,因为构成到某一位时会出现构建下一位不够用的情况,例如,n=6时,6=2+3+1。当我们要构成4的时候只剩下1了。如果余数是1,那么我们必然要加到前面的某一个数字上,否则乘积无法增大。如果是大于1的数,也必须加在前面的某些数字上,否则如果单乘会出现重复数字。对于一个余数,应该每次将余数中的一个1分配给数列中最小的数字,这样才能使得乘积每次增大的幅度最大,因为增加量是所有除了最小乘数之外的数字的乘积。但是这样做会造成数字重复,所以唯一可以避免数字重复的方法是将这些1从最大的数字开始依次向较小数分配,让每个乘数增加1。但是这样仍然可能有剩余,但最多剩余1,因为再多就足够构成下一个乘数的了,同样为了避免重复,我们只能将这个1加在最大的乘数上。

 


 

/*
 * POJ_1032.cpp
 *
 *  Created on: 2013年11月25日
 *      Author: Administrator
 */



#include <iostream>
#include <cstdio>

using namespace std;

const int maxn = 1005;
int ans[maxn];

int main(){
	int n;
	while(scanf("%d",&n)!=EOF){

		int total = 0;
		int i = 2;
		while(total + i <= n ){
			total += i;
			ans[i-2] = i;
			++i;
		}

		n -= total;
		i = i-3;
		total = i;

		while(i >= 0 && n > 0){
			--n;
			ans[i]++;
			--i;
		}

		if(n>0){
			ans[total]++;
		}

		bool first = true;
		for(i = 0 ; i <= total ; ++i){
			if(!first){
				cout<<" ";
			}
			first = false;
			cout<<ans[i];
		}
	}

	return 0;
}


 

 

posted on 2013-12-05 11:00  我的小人生  阅读(325)  评论(0编辑  收藏  举报