uva 11300 - Spreading the Wealth(数论)
题目链接:uva 11300 - Spreading the Wealth
题目大意:有n个人坐在圆桌旁,每个人有一定的金币,金币的总数可以被n整除,现在每个人可以给左右的人一些金币,使得每个人手上的金币数量相等,问说最少移动的金币数额。
解题思路:假设xi为第i个人给左手边人的金币数量,那么就有a[i] - x[i]+ x[i + 1] = aver.那么
a[1] - x[1] + x[2] = aver -> x2 = aver - a[1] + x[1] -> x[2]= x[1] - c[1] (c[i]为∑a[j] - aver)
a[2] - x[2] + x[3] = aver -> x3 = aver - a[2] + x[2] = aver - a[2] + aver - a[1] + x[1] = x[1] - c[2]
.....
所以就有a[n] = x[1] - c[n],然后∑|x[i]| = ∑ | x[1] - c[i] |, 然后就可以转化成在数轴选取点x[1] 到点0 , c[1] ....c[n - 1],使得距离最小,(x[1] - c[n])即为x[1]到0的距离。然后就是最取中位数计算距离。
#include <stdio.h> #include <string.h> #include <stdlib.h> #include <algorithm> using namespace std; #define ll long long const int N = 1000005; ll n, aver, a[N], c[N]; void input() { ll sum = 0; for (int i = 1; i <= n; i++) { scanf("%lld", &a[i]); sum += a[i]; } aver = sum / n; c[0] = 0; for (int i = 1; i < n; i++) c[i] = c[i - 1] - a[i] + aver; sort(c, c + n); } ll solve() { ll tmp = c[n / 2], ans = 0; for (int i = 0; i < n; i++) ans += abs(c[i] - tmp); return ans; } int main () { while (scanf("%lld", &n) == 1) { input(); printf("%lld\n", solve()); } return 0; }