你可能会想为什么有人会用1x1卷积,因为它关注的不是一块像素,而是一个像素,图1

图1

我们看看传统的卷积,它基本上是运行在一个小块图像上的小分类器,但仅仅是个线性分类器。图2

图2

如果你在中间加一个1x1卷积,你就用运行在一块像素上的神经网络代替了线性分类器。

在卷积操作中散步一些1x1卷积是一种使得模型变得更深的低耗高效的方法,并且会有更多的参数。图3

图3

这样做没有改变神经网络的结构,他们非常简单,因为如果你看到他们的数学公式,他们根本不是卷积。

只是矩阵相乘并且有较少的参数。

posted on 2018-07-04 19:18  未完代码  阅读(1486)  评论(0编辑  收藏  举报