当我们试图识别一个猫的图片的时候,我们并不在意猫出现在哪个位置。无论是左上角,右下角,它在你眼里都是一只猫。我们希望 CNNs 能够无差别的识别,这如何做到呢?
如我们之前所见,一个给定的 patch 的分类,是由 patch 对应的权重和偏置项决定的。
如果我们想让左上角的猫与右下角的猫以同样的方式被识别,他们的权重和偏置项需要一样,这样他们才能以同一种方法识别。
这正是我们在 CNNs 中做的。一个给定输出层学到的权重和偏置项会共享在输入层所有的 patch 里。注意,当我们增大滤波器的深度的时候,我们需要学习的权重和偏置项的数量也会增加,因为权重并没有共享在所有输出的 channel 里。
共享参数还有一个额外的好处。如果我们不在所有的 patch 里用相同的权重,我们必须对每一个 patch 和它对应的隐藏层神经元学习新的参数。这不利于规模化,特别对于高清图片。因此,共享权重不仅帮我们平移不变,还给我们一个更小,可以规模化的模型。
Padding
假设现在有一个 5x5
网格 (如上图所示) 和一个尺寸为 3x3
stride值为 1
的滤波器(filter)。 下一层的 width 和 height 是多少呢? 如图中所示,在水平和竖直方向都可以在3个不同的位置放置 patch, 下一层的维度即为 3x3
。下一层宽和高的尺寸就会按此规则缩放。
在理想状态下,我们可以在层间保持相同的宽度和高度,以便继续添加图层,保持网络的一致性,而不用担心维度的缩小。如何实现这一构想?其中一种简单的办法是,在 5x5
原始图片的外层包裹一圈 0
,如下图所示。
这将会把原始图片扩展到 7x7
。 现在我们知道如何让下一层图片的尺寸维持在 5x5
,保持维度的一致性。
维度
综合目前所学的知识,我们应该如何计算 CNN 中每一层神经元的数量呢?
输入层(input layer)维度值为W
, 滤波器(filter)的维度值为 F
(height * width * depth
), stride 的数值为 S
, padding 的数值为 P
, 下一层的维度值可用如下公式表示: (W−F+2P)/S+1
。
我们可以通过每一层神经元的维度信息,得知模型的规模,并了解到我们设定的 filter size 和 stride 如何影响整个神经网络的尺寸。
介绍
接下来的几个练习将检测你对 CNNs 维度的理解,理解维度可以帮你在模型大小和模型质量上,做精确的权衡。你将会了解,一些参数对模型大小的影响会远大于另外一些。
设置
H = height, W = width, D = depth
- 我们有一个输入维度是 32x32x3 (HxWxD)
- 20个维度为 8x8x3 (HxWxD) 的滤波器
- 高和宽的stride(步长)都为 2。(S)
- padding 大小为1 (P)
计算新的高度和宽度的公式是:
new_height = (input_height - filter_height + 2 * P)/S + 1
new_width = (input_width - filter_width + 2 * P)/S + 1
卷积层输出维度
输出的维度(shape)是什么? 14x14x20
代入公式可以得到下列结果:
(32 - 8 + 2 * 1)/2 + 1 = 14
(32 - 8 + 2 * 1)/2 + 1 = 14
新的深度与滤波器的数量相同,都是 20。
对应如下代码:
input = tf.placeholder(tf.float32, (None, 32, 32, 3)) filter_weights = tf.Variable(tf.truncated_normal((8, 8, 3, 20))) # (height, width, input_depth, output_depth) filter_bias = tf.Variable(tf.zeros(20)) strides = [1, 2, 2, 1] # (batch, height, width, depth) padding = 'VALID' conv = tf.nn.conv2d(input, filter_weights, strides, padding) + filter_bias
注意,这里的conv
输出的是 [1, 13, 13, 20]。这是对应 batch size 的 4D 大小,重要的是它不是 [1, 14, 14, 20]。这是因为 TensorFlow 的 padding 算法与上面的并不完全相同。一个可替换方案是把 padding
从 'VALID'
改为'SAME'
,这样得到的结果是 [1, 16, 16, 20]。如果你想了解 TensorFlow 中的 padding 如何工作,可以看这个文档。
总之,TensorFlow 使用如下等式计算 SAME
、PADDING
SAME Padding, 输出的高和宽,计算如下:
out_height
= ceil(float(in_height) / float(strides1))
out_width
= ceil(float(in_width) / float(strides[2]))
VALID Padding, 输出的高和宽,计算如下:
out_height
= ceil(float(in_height - filter_height + 1) / float(strides1))
out_width
= ceil(float(in_width - filter_width + 1) / float(strides[2]))