2023.3.31每日总结

实验目的

l 使学生熟练安装扩展库numpyrequestsbs4pandasseabornmatplotlib等;

使学生熟悉使用标准库cvs操作文件;

l 使学生熟悉使用pandas进行数据分析的基本操作

l 使学生了解使用seaborn绘制热力图的方法;

使学生熟练使用matplotlib进行数据可视化

使学生熟练使用nmupy进行科学计算

使学生熟练运用requests库和bs4库进行基本的数据爬取

实验环境及实验准备

l 所需硬件环境为微机;

所需软件环境为Python 3.X等;

掌握Pythonnumpyrequestsbs4pandasseabornmatplotlibcvs等的使用;

实验内容

(一)、中国大学排名数据分析与可视化(写到实验报告中)

【源代码程序】

import requests

from bs4 import BeautifulSoup as bs

import pandas as pd

from matplotlib import pyplot as plt

 

 

def get_rank(url):

   count = 0

   rank = []

   headers = {

       "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.54 Safari/537.36 Edg/101.0.1210.3"

   }

   resp = requests.get(url, headers=headers).content.decode()

   soup = bs(resp, "lxml")

   univname = soup.find_all('a', class_="name-cn")

   for i in univname:

       if count != 10:

           university = i.text.replace(" ", "")

           score = soup.select("#content-box > div.rk-table-box > table > tbody > tr:nth-child({}) > td:nth-child(5)"

                               .format(count + 1))[0].text.strip()

           rank.append([university, score])

       else:

           break

       count += 1

   return rank

 

 

total = []

u_year = 2015

for i in range(15, 20):

   url = "https://www.shanghairanking.cn/rankings/bcur/20{}11".format(i)

   print(url)

   title = ['学校名称', '总分']

   df = pd.DataFrame(get_rank(url), columns=title)

   total.append(df)

for i in total:

   plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签

   x = list(i["学校名称"])[::-1]

   y = list(i["总分"])[::-1]

   # 1.创建画布

   plt.figure(figsize=(20, 8), dpi=100)

   # 2.绘制图像

   plt.plot(x, y, label="大学排名")

   # 2.2 添加网格显示

   plt.grid(True, linestyle="--", alpha=0.5)

   # 2.3 添加描述信息

   plt.xlabel("大学名称")

   plt.ylabel("总分")

   plt.title(str(u_year) + "年软科中国最好大学排名Top10", fontsize=20)

   # 2.5 添加图例

   plt.legend(loc="best")

   # 3.图像显示

   plt.savefig(str(u_year)+".png")

   plt.show()

 

   u_year += 1

 

while True:

   info = input("请输入要查询的大学名称和年份:")

   count = 0

   university, year = info.split()

   year = int(year)

   judge = 2019 - year

   tmp = total[::-1]

   if 4 >= judge >= 0:

       name = list(total[judge - 1]["学校名称"])

       for j in name:

           if university == j:

               print(university + "在{0}年排名第{1}".format(year, count + 1))

               break

           count += 1

       if count ==10:

           print("很抱歉,没有该学校的排名记录!!!")

           print("请选择以下选项:")

           print("   1.继续查询")

           print("   2.结束查询")

           select = int(input(""))

 

           if select == 1:

               continue

           elif select == 2:

               break

       else:

           break

   else:

       print("很抱歉,没有该年份的排名记录!!!")

       print("请选择以下选项:")

       print("   1.继续查询")

       print("   2.结束查询")

       select = int(input(""))

 

       if select == 1:

           continue

       elif select == 2:

           break

 

运行测试

 

 

 

 

 

 

 

)、豆瓣图书评论数据分析与可视化(写到实验报告中)

【源代码程序】

import re

from collections import Counter

 

import requests

# from lxml import etree

from lxml import etree

 

import pandas as pd

import jieba

import matplotlib.pyplot as plt

from wordcloud import WordCloud

 

headers = {

    # "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.54 Safari/537.36 Edg/101.0.1210.39"

 

"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.0.0 Safari/537.36"

}

 

comments = []

words = []

 

 

def regex_change(line):

   # 前缀的正则

   username_regex = re.compile(r"^\d+::")

   # URL,为了防止对中文的过滤,所以使用[a-zA-Z0-9]而不是\w

   url_regex = re.compile(r"""

       (https?://)?

       ([a-zA-Z0-9]+)

       (\.[a-zA-Z0-9]+)

       (\.[a-zA-Z0-9]+)*

       (/[a-zA-Z0-9]+)*

   """, re.VERBOSE | re.IGNORECASE)

   # 剔除日期

   data_regex = re.compile(u"""        #utf-8编码

        |

        |

        |

       (周一) |

       (周二) |

       (周三) |

       (周四) |

       (周五) |

       (周六)

   """, re.VERBOSE)

   # 剔除所有数字

   decimal_regex = re.compile(r"[^a-zA-Z]\d+")

   # 剔除空格

   space_regex = re.compile(r"\s+")

   regEx = "[\n”“|,,;;''/?! 。的了是]"  # 去除字符串中的换行符、中文冒号、|,需要去除什么字符就在里面写什么字符

   line = re.sub(regEx, "", line)

   line = username_regex.sub(r"", line)

   line = url_regex.sub(r"", line)

   line = data_regex.sub(r"", line)

   line = decimal_regex.sub(r"", line)

   line = space_regex.sub(r"", line)

   return line

 

 

def getComments(url):

   score = 0

   resp = requests.get(url, headers=headers).text

   html = etree.HTML(resp)

   comment_list = html.xpath(".//div[@class='comment']")

   for comment in comment_list:

       status = ""

       name = comment.xpath(".//span[@class='comment-info']/a/text()")[0]  # 用户名

       content = comment.xpath(".//p[@class='comment-content']/span[@class='short']/text()")[0]  # 短评内容

       content = str(content).strip()

       word = jieba.cut(content, cut_all=False, HMM=False)

       time = comment.xpath(".//span[@class='comment-info']/a/text()")[1]  # 评论时间

       mark = comment.xpath(".//span[@class='comment-info']/span/@title")  # 评分

       if len(mark) == 0:

           score = 0

       else:

           for i in mark:

               status = str(i)

           if status == "力荐":

               score = 5

           elif status == "推荐":

               score = 4

           elif status == "还行":

               score = 3

           elif status == "较差":

               score = 2

           elif status == "很差":

               score = 1

       good = comment.xpath(".//span[@class='comment-vote']/span[@class='vote-count']/text()")[0]  # 点赞数(有用数)

       comments.append([str(name), content, str(time), score, int(good)])

       for i in word:

           if len(regex_change(i)) >= 2:

               words.append(regex_change(i))

 

 

def getWordCloud(words):

   # 生成词云

   all_words = []

   all_words += [word for word in words]

   dict_words = dict(Counter(all_words))

   bow_words = sorted(dict_words.items(), key=lambda d: d[1], reverse=True)

   print("热词前10位:")

   for i in range(10):

       print(bow_words[i])

   text = ' '.join(words)

 

   w = WordCloud(background_color='white',

                    width=1000,

                    height=700,

                    font_path='simhei.ttf',

                    margin=10).generate(text)

   plt.show()

   plt.imshow(w)

   w.to_file('wordcloud.png')

 

 

print("请选择以下选项:")

print("   1.热门评论")

print("   2.最新评论")

info = int(input())

print("前10位短评信息:")

title = ['用户名', '短评内容', '评论时间', '评分', '点赞数']

if info == 1:

   comments = []

   words = []

   for i in range(0, 60, 20):

       url = "https://book.douban.com/subject/10517238/comments/?start={}&limit=20&status=P&sort=new_score".format(

           i)  # 前3页短评信息(热门)

       getComments(url)

   df = pd.DataFrame(comments, columns=title)

   print(df.head(10))

   print("点赞数前10位的短评信息:")

   df = df.sort_values(by='点赞数', ascending=False)

   print(df.head(10))

   getWordCloud(words)

elif info == 2:

   comments = []

   words=[]

   for i in range(0, 60, 20):

       url = "https://book.douban.com/subject/10517238/comments/?start={}&limit=20&status=P&sort=time".format(

           i)  # 前3页短评信息(最新)

       getComments(url)

   df = pd.DataFrame(comments, columns=title)

   print(df.head(10))

   print("点赞数前10位的短评信息:")

   df = df.sort_values(by='点赞数', ascending=False)

   print(df.head(10))

   getWordCloud(words)

运行测试

 

)、函数图形1绘制(写到实验报告中)

【源代码程序】

import matplotlib.pyplot as plt

import numpy as np

 

x = np.arange(0, 10, 0.0001)

y1 = x ** 2

y2 = np.cos(x * 2)

y3 = y1 * y2

plt.plot(x, y1,linestyle='-.')

plt.plot(x, y2,linestyle=':')

plt.plot(x, y3,linestyle='--')

plt.savefig("3-1.png")

plt.show()

 

运行测试

 

 

(四)、函数图形2绘制(写到实验报告中)

【源代码程序】

import matplotlib.pyplot as plt

import numpy as np

 

x = np.arange(-2, 2, 0.0001)

y1 = np.sqrt(2 * np.sqrt(x ** 2) - x ** 2)

y2 = (-2.14) * np.sqrt(np.sqrt(2) - np.sqrt(np.abs(x)))

plt.plot(x, y1, 'r', x, y2, 'r')

plt.fill_between(x, y1, y2, facecolor='orange')

plt.savefig("heart.png")

plt.show()

运行测试

 

 

 


Python数据处理训练

 

班级:2105-2      学号:20213848      姓名:付楚楚

实验自评

实验内容

自评结果(在对应格内打ü

不熟练

一般

比较熟练

熟练

Python下数据爬取及应用

 

 

 

ü

Python下科学计算及数据分析

 

 

 

ü

Python下可视化展示

 

 

 

ü

实验体会

本学期的python公选课,学习了运算符、数据类型、输入输出、控制语句、字符串、正则表达式、函数、面向对象的程序设计、文件操作异常处理、python爬虫。作为大一的新生,我在本学期同时学习两种编程语言,从中可以体会到python比C语言更加简洁,短短几行代码就可以完成很多内容。当然,C语言也相当重要,就算以后不专攻C语言而主修其他语言,C语言给予我充分的逻辑训练也能很好的辐射其它语言的学习,正如本学期的python公选课。总而言之,敲代码是必不可少的训练过程,在今后的学习中,我会更加勤奋地敲代码,练逻辑,迈上更大更广的台阶。

posted @   与孤独对酌  阅读(11)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 记一次.NET内存居高不下排查解决与启示
点击右上角即可分享
微信分享提示