YOLO-V5-s 实现人脸框检测

  • 载yolov-v5代码,并安装依赖库(推荐adaconda创建虚拟环境后安装)

    github地址:https://github.com/ultralytics/yolov5

    yolo-v5官方文档:https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/#train-on-custom-data

    git clone https://github.com/ultralytics/yolov5  # clone
    cd yolov5
    pip install -r requirements.txt  # install

 

 

  • 下载人脸检测训练集
    WIDER FACE训练集:http://shuoyang1213.me/WIDERFACE/index.html

     




  • 将WINDER FACE人脸框信息转为YOLO格式
    由于训练速度慢,验证集数据量最少,本次将使用验证集作为训练集使用
    将训练集图片和对应人脸框信息放到YOLO-v5项目下




  •  

    使用脚本将WINDER FACE数据转化为YOLO格式

    import os
    import shutil
    
    
    class WiderFace(object):
        def __init__(self, label_path, img_dir_path, save_path, class_num):
            self.class_num = class_num
            self.label_path = label_path
            self.img_dir_path = img_dir_path
            self.save_path = save_path
            # self.train_percent = train_percent
            # self.val_percent = val_percent
            # self.test_percent = test_percent
            self.yolo_img_path = os.path.join(save_path, "images")
            self.yolo_label_path = os.path.join(save_path, "labels")
            if not os.path.exists(self.yolo_img_path ):
                os.makedirs(self.yolo_img_path)
            if not os.path.exists(self.yolo_label_path ):
                os.makedirs(self.yolo_label_path)
    
        def analysis_line(self, line):
            """判断当前行数据类型,并返回"""
            if "." in line:
                img_path = os.path.join(self.img_dir_path, line)
                img_path = img_path.replace("\n", "")
                return "img", img_path
            if " " in line:
                # 左、上、宽、高
                landmark = line.split(" ")[:4]
                return "bbox", landmark
            return "box_sum", line.replace("\n", "")
    
        def save_img(self, img_path):
            """复制图片到新目录并按照图片数量重新命名"""
            file_count = len(os.listdir(self.yolo_img_path))
            new_file_name = "%05d" % file_count + os.path.splitext(img_path)[-1]
            new_file_path = os.path.join(self.yolo_img_path, new_file_name)
            shutil.copy(img_path, new_file_path)
            return new_file_name
    
        def save_yolo(self):
            with open(self.label_path, "r") as f:
                bbox_list = []
                cur_img_name = ""
                for line in f:
                    line_type, data = self.analysis_line(line)
                    if line_type == 'img':
                        # 显示图片和人脸框
                        # if bbox_list:
                        #     from PIL import Image, ImageDraw
                        #     new_file_path = os.path.join(self.yolo_img_path, cur_img_name)
                        #     img = Image.open(new_file_path)
                        #     draw = ImageDraw.Draw(img)
                        #     for item in bbox_list:
                        #         draw.rectangle(xy=item, outline="red")
                        #     img.show()
                        #     img.close()
                        #     bbox_list.clear()
    
                        # 拷贝图片并重新命名
                        img_path = os.path.join(self.yolo_img_path, data)
                        cur_img_name = self.save_img(img_path)
                    elif line_type == 'bbox':
                        # 存储所属分类和人脸框信息
                        from PIL import Image
                        new_file_path = os.path.join(self.yolo_img_path, cur_img_name)
                        img = Image.open(new_file_path)
                        w, h = img.size
                        x_center, y_center = int(data[0])+int(data[2])/2, int(data[1])+int(data[3])/2
                        yolo_label = "1 %s %s %s %s\n" % (x_center/w, y_center/h, int(data[2])/w, int(data[3])/h)
                        label_path = os.path.join(self.yolo_label_path, cur_img_name.split(".")[0]) + ".txt"
                        with open(label_path, "a+") as f:
                            f.writelines(yolo_label)
    
                        # 存储人脸框信息
                        xy = (int(data[0]), int(data[1]), int(data[0])+int(data[2]), int(data[1])+int(data[3]))
                        bbox_list.append(xy)
    
    
    if __name__ == "__main__":
        label_path = "/Users/wb-fcj414969/project/yolov5-master/samples/wider_face/wider_face_val_bbx_gt.txt"
        img_dir_path = "/Users/wb-fcj414969/project/yolov5-master/samples/wider_face/WIDER_val/images"
        save_dir_path = "/Users/wb-fcj414969/project/yolov5-master/samples/wider_face/yolo/"
        # train_percent = 0.6
        # val_percent = 0.2
        # test_percent = 0.2
        wider_face = WiderFace(label_path, img_dir_path, save_dir_path, 1)
        wider_face.save_yolo()
    

      

  • 新建数据集配置文件face.yaml放入data文件中

    # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
    # COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
    # Example usage: python train.py --data coco128.yaml
    # parent
    # ├── yolov5
    # └── datasets
    #     └── coco128  ← downloads here (7 MB)
    
    
    # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
    path:*****/samples/wider_face/yolo  # dataset root dir
    train: images  # train images (relative to 'path') 128 images
    val: images  # val images (relative to 'path') 128 images
    test:  # test images (optional)
    
    # Classes
    names:
      0: person
      1: face
    
    
    # Download script/URL (optional)
    #download: https://ultralytics.com/assets/coco128.zip
    

      

     

  • shell命令启动训练脚本
    python train.py --img 640 --epochs 3 --data face.yaml --weights yolov5s.pt


     

posted @ 2023-08-11 16:17  你看起来真的很好吃  阅读(453)  评论(0编辑  收藏  举报