leetcode@ [310] Minimum Height Trees
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n
nodes which are labeled from 0
to n - 1
. You will be given the number n
and a list of undirected edges
(each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges
. Since all edges are undirected, [0, 1]
is the same as [1, 0]
and thus will not appear together in edges
.
Example 1:
Given n = 4
, edges = [[1, 0], [1, 2], [1, 3]]
0 | 1 / \ 2 3
return [1]
Example 2:
Given n = 6
, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2 \ | / 3 | 4 | 5
return [3, 4]
Hint:
- How many MHTs can a graph have at most?
Note:
(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.
public class Solution { /** return the height of tree if let s to be the root of the tree */ public static int bfs(ArrayList<ArrayList<Integer> > g, int s) { HashSet<Integer> upper = new HashSet<Integer> (); HashSet<Integer> lower = new HashSet<Integer> (); HashSet<Integer> vis = new HashSet<Integer> (); upper.add(s); vis.add(s); int lv = 1; while(!upper.isEmpty()) { for(int u: upper) { ArrayList<Integer> adj = g.get(u); for(int i=0; i<adj.size(); ++i) { int adj_node = adj.get(i); if(!vis.contains(adj_node)) { lower.add(adj_node); } } } if(!lower.isEmpty()) { ++lv; } upper.clear(); for(int c: lower) { vis.add(c); upper.add(c); } lower.clear(); } return lv; } public static ArrayList<Integer> topologicalSort(int n, int[][] edges, ArrayList<ArrayList<Integer> > g) { ArrayList<Integer> topo = new ArrayList<Integer> (); int[] d = new int[n]; for(int i=0; i<edges.length; ++i) { int u = edges[i][0], v = edges[i][1]; ++d[u]; ++d[v]; } LinkedList<Integer> queue = new LinkedList<Integer> (); for(int i=0; i<n; ++i) { if(d[i] == 1) { queue.addLast(i); } } while(!queue.isEmpty()) { int top = queue.pollFirst(); topo.add(top); ArrayList<Integer> adj = g.get(top); for(int next: adj) { d[next]--; if(d[next] == 1) { queue.addLast(next); } } } return topo; } public List<Integer> findMinHeightTrees(int n, int[][] edges) { List<Integer> rs = new ArrayList<Integer> (); if(n == 1) { rs.add(0); return rs; } ArrayList<ArrayList<Integer> > g = new ArrayList<ArrayList<Integer> > (); for(int i=0; i<n; ++i) { ArrayList<Integer> row = new ArrayList<Integer> (); g.add(row); } for(int i=0; i<edges.length; ++i) { int u = edges[i][0]; int v = edges[i][1]; g.get(u).add(v); g.get(v).add(u); } HashMap<Integer, Integer> mapping = new HashMap<Integer, Integer> (); ArrayList<Integer> topo = topologicalSort(n, edges, g); int idx = topo.get(topo.size()-1); int min_lv = bfs(g, idx); rs.add(idx); if(topo.size() >= 2) { int indice = topo.get(topo.size()-2); if(bfs(g, indice) == min_lv) { rs.add(indice); } } return rs; } }