Codeforces Round #456 (Div. 2)

C. Perun, Ult!

分析

首先对于每个敌人单独预处理时间线(即在什么时候可以杀死这个敌人,什么时候杀不死了),然后通过一个总时间线去更新答案。

code

#include<bits/stdc++.h>
using namespace std;

const int N = 1e5 + 10;

map<long long, int> add, erase;

set<long long> timeline;

vector<pair<long long, int> > V[N];

int max_health[N], regen[N];

int main() {
    int n, m, bounty, increase, damage;
    cin >> n >> m >> bounty >> increase >> damage;
    for (int i = 0; i < n; i++) {
        int h;
        scanf("%d%d%d", &max_health[i], &h, &regen[i]);
        V[i].push_back(make_pair(0, h));
    }
    for (int i = 0; i < m; i++) {
        int t, id, h;
        scanf("%d%d%d", &t, &id, &h);
        V[id - 1].push_back(make_pair(t, h));
    }
    for (int i = 0; i < n; i++) {
        auto& v = V[i];
        sort(v.begin(), v.end());
        if(increase > 0) {
            if(damage >= max_health[i] || (!regen[i] && v.back().second <= damage)) {
                return puts("-1") * 0;
            }
        }
        for (int j = 0; j < v.size(); j++) {

            if(v[j].second > damage) continue;

            add[v[j].first]++;
            long long interval = 2e9;
            if(j != v.size() - 1) interval = min(interval, v[j + 1].first - v[j].first - 1);
            if(regen[i]) interval = min(interval, 1LL * (damage - v[j].second) / regen[i]);
            erase[v[j].first + interval]++;

            timeline.insert(v[j].first);
            timeline.insert(v[j].first + interval);
        }
    }
    long long ans = 0, cnt = 0;
    for (long long x : timeline) {
        cnt += add[x];
        ans = max(ans, cnt * (bounty + x * increase));
        cnt -= erase[x];
    }
    cout << ans << endl;
    return 0;
}

D. Fishes

分析

虽然 \(n\)\(m\) 的数据都很大( \(n*m\)的矩阵),但是 \(k\) 很小,那我们就应该考虑是否可能要枚举 \(k\) 了。

求期望分为求分子和分母。分母是所有的撒网方案数,分母无法改变,我们要求分子尽可能大。

分子实际上是要求在某种鱼的布局情况下,所有可能的撒网方案下,鱼出现的次数之和最大。那么可以考虑一条鱼在不同位置对答案的贡献最大是多少,也就是说有几种方案的网可以罩住这条鱼所在的位置,这里要对行列都预处理下,再用优先队列维护下答案,因为 \(n\)\(m\) 都很大我们无法全部枚举出来,最后取最大的 \(k\) 个即可。

code

#include<bits/stdc++.h>
using namespace std;

const int N = 1e5 + 10;

int a[N], b[N];

struct P {
    long long x;
    int i;
    P() {}
    P(long long x, int i): x(x), i(i) {}
    friend bool operator <(P a, P b)  {
        return a.x < b.x;
    }
};

priority_queue<P> q;

int main() {
    int n, m, r, k;
    cin >> n >> m >> r >> k;
    for (int i = 1; i <= n; i++) {
        a[i] = min(n - r + 1, i) - max(i - r + 1, 1) + 1;
    }
    for (int i = 1; i <= m; i++) {
        b[i] = min(m - r + 1, i) - max(i - r + 1, 1) + 1;
    }
    sort(a + 1, a + n + 1);
    sort(b + 1, b + m + 1);
    for (int i = 1; i <= n; i++) {
        q.push(P(a[i] * b[m], m));
    }
    long long z = 1LL * (n - r + 1) * (m - r + 1);
    long long s = 0;
    while(k--) {
        P p = q.top(); q.pop();
        s += p.x;
        if(p.i > 1) {
            p.x /= b[p.i];
            p.i--;
            p.x *= b[p.i];
            q.push(p);
        }
    }
    printf("%.10f\n", 1.0 * s / z);
    return 0;
}

E. Prime Gift

分析

二分答案 \(ans\),问题转化成小于等于 \(ans\) 的有多少个数。

dfs 暴力枚举素因子构造数,当然不能直接枚举所有素因子,考虑分成两组(按下标奇偶交替分组),使得后面构造出的两组数数量尽可能相等。假设数量最多为 \(n\),那么将两组排序后,\(O(n)\) 的复杂度就可以回答转化后的问题,当然排序会有 \(O(nlogn)\) 的复杂度。

由这道题可见 CF 的速度还是很快的,本地跑 3 秒,CF 1.3 秒。

code

#include<bits/stdc++.h>
using namespace std;

int n;
long long k;
vector<int> v1, v2;
vector<long long> res1, res2;
void dfs(int i, long long x, long long r, vector<int> v, vector<long long>& res) {
    res.push_back(x);
    for(int j = i; j < v.size(); j++) {
        if(v[j] <= r / x) dfs(j, x * v[j], r, v, res);
        else break;
    }
}

long long judge(long long r) {
    int s = res2.size() - 1;
    long long ans = 0;
    for (int i = 0; i < res1.size(); i++) {
        while(s >= 0 && res2[s] > r / res1[i]) s--;
        ans += s + 1;
    }
    return ans;
}

int main() {
    cin >> n;
    for (int i = 0; i < n; i++) {
        int p;
        cin >> p;
        !(i & 1) ? v1.push_back(p) : v2.push_back(p);
    }
    cin >> k;
    res1.clear();
    res2.clear();
    dfs(0, 1, 1e18, v1, res1);
    dfs(0, 1, 1e18, v2, res2);
    sort(res1.begin(), res1.end());
    sort(res2.begin(), res2.end());
    long long l = 1, r = 1e18;
    while(l < r) {
        long long mid = l + r >> 1;
        if(judge(mid) < k) l = mid + 1;
        else r = mid;
    }
    cout << l << endl;
    return 0;
}
posted @ 2018-01-31 21:04  ftae  阅读(162)  评论(0编辑  收藏  举报