hdu6071(最短路)

hdu6071

题意

四个点连接形成一个环,给出相邻两个点的距离,求从点 \(2\) 出发再回到 \(2\) 的路程大于等于 \(K\) 的最小值。

分析

首先我们让 \(w=min(d12, d23)\) ,那么如果存在一个合法的路程 \(k\) 必然会存在路程 \(k + 2 * w\)
\(d[x][v]\) 表示从 \(2\) 出发到 \(x\) 点时 \(v = d[x][v] \% (2 * w)\) 的最小值。跑一遍最短路计算出 \(d\) 数组。
枚举区间 \([0, 2*w-1]\) ,答案一定可以在这里面取到(如果不足 \(K\) ,不断加上 \(2 * w\) 直到大于 \(K\))。
如果 \(ans\) 为答案,\(ans \% (2*w)\)的余数一定在 \([0, 2*w-1]\) 间,对于每种余数,我们都求到了得到这个余数的最小值。

code

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, int> P;
const ll INF = 1e18;
const int MAXN = 6e4 + 10;
vector<P> G[MAXN];
ll d[5][MAXN];
void dijkstra(ll w, int s) {
    for(int i = 1; i <= 4; i++) {
        fill(d[i], d[i] + w, INF);
    }
    priority_queue<P, vector<P>, greater<P> >q;
    q.push(P(0, s));
    d[s][0] = 0;
    while(!q.empty()) {
        P p = q.top(); q.pop();
        int v = p.second;
        if(p.first > d[v][p.first % w]) continue;
        for(int i = 0; i < (int)G[v].size(); i++) {
            P e = G[v][i];
            ll dist = e.first + d[v][p.first % w];
            if(dist < d[e.second][dist % w]) {
                d[e.second][dist % w] = dist;
                q.push(P(dist, e.second));
            }
        }
    }
}
int main() {
    int T;
    cin >> T;
    while(T--) {
        memset(G, 0, sizeof G);
        ll K, d1, d2, d3, d4;
        cin >> K >> d1 >> d2 >> d3 >> d4;
        G[1].push_back(P(d1, 2));
        G[2].push_back(P(d1, 1));
        G[2].push_back(P(d2, 3));
        G[3].push_back(P(d2, 2));
        G[3].push_back(P(d3, 4));
        G[4].push_back(P(d3, 3));
        G[4].push_back(P(d4, 1));
        G[1].push_back(P(d4, 4));
        ll w = 2 * min(d1, d2);
        dijkstra(w, 2);
        ll ans = INF;
        for(ll i = 0; i < w; i++) {
            if(d[2][i] >= K) {
                ans = min(ans, d[2][i]);
            } else {
                ll nd = K - d[2][i];
                ans = min(ans, d[2][i] + nd / w * w + (nd % w > 0) * w);
            }
        }
        cout << ans << endl;
    }
    return 0;
}
posted @ 2017-08-05 22:24  ftae  阅读(538)  评论(0编辑  收藏  举报