Gym - 101194F(后缀数组)
Mr. Panda and Fantastic Beasts
题意
给出若干个字符串,找到一个最短的字典序最小的字符串且仅是第一个字符串的子串。
分析
对于这种多个字符串、重复的子串问题一般都要连接字符串加后缀数组解决(当然也存在其它方法)。
用一个未出现的字符连接多个字符串,计算出后缀数组,枚举 \(sa\) 数组(\(sa\) 数组是按字典序排序的,保证我们选到的相同长度的子串一定是字典序最小的)。
如果枚举到的 \(sa\) 的首字母都属于第一个字符串,那么全部存起来,直到遇到其它字符串,我们用前面存起来的的值分别与前面最近的、后面最近的首字母不在第一个字符串的后缀串计算 \(LCP1, LCP2\) (这个可以用 \(ST\) 算法预处理),那么长度至少为是 \(max\{LCP1, LCP2\} + 1\),但是必须保证加上首字母的下标不超过第一个字符串的长度。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
typedef long long ll;
using namespace std;
const int MAXN = 5e5 + 10;
const int INF = 1e8;
char s[MAXN];
int sa[MAXN], t[MAXN], t2[MAXN], c[MAXN], n; // n 为 字符串长度 + 1,即最后一位为数字 0
int rnk[MAXN], height[MAXN];
// 构造字符串 s 的后缀数组。每个字符值必须为 0 ~ m-1
void build_sa(int m) {
int i, *x = t, *y = t2;
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[i] = s[i]]++;
for(i = 1; i < m; i++) c[i] += c[i - 1];
for(i = n - 1; i >= 0; i--) sa[--c[x[i]]] = i;
for(int k = 1; k <= n; k <<= 1) {
int p = 0;
for(i = n - k; i < n; i++) y[p++] = i;
for(i = 0; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
for(i = 0; i < m; i++) c[i] = 0;
for(i = 0; i < n; i++) c[x[y[i]]]++;
for(i = 0; i < m; i++) c[i] += c[i - 1];
for(i = n - 1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = 1; x[sa[0]] = 0;
for(i = 1; i < n; i++)
x[sa[i]] = y[sa[i - 1]] == y[sa[i]] && y[sa[i - 1] + k] == y[sa[i] + k] ? p - 1 : p++;
if(p >= n) break;
m = p;
}
}
void getHeight() {
int i, j, k = 0;
for(i = 0; i < n; i++) rnk[sa[i]] = i;
for(i = 0; i < n - 1; i++) {
if(k) k--;
j = sa[rnk[i] - 1];
while(s[i + k] == s[j + k]) k++;
height[rnk[i]] = k;
}
}
int T, kase = 1;
char s2[MAXN];
int q[MAXN];
int dp[MAXN][30];
void init() {
for(int i = 0; i < n; i++) {
dp[i][0] = height[i];
}
for(int i = 1; (1 << i) < MAXN; i++) {
for(int j = 0; j < n; j++) {
dp[j][i] = min(dp[j][i - 1], dp[j + (1 << (i - 1))][i - 1]);
}
}
}
int query(int l, int r) {
if(l > r) swap(l, r);
l++;
int k = (int)(log((double)r - l + 1) / log(2.0));
return min(dp[l][k], dp[r - (1 << k) + 1][k]);
}
int main() {
scanf("%d", &T);
while(T--) {
int m;
scanf("%d", &m);
scanf("%s", s);
int L = strlen(s);
int k = L;
s[L++] = '$';
for(int i = 1; i < m; i++) {
scanf("%s", s2);
int l = strlen(s2);
for(int j = L; j < L + l; j++) {
s[j] = s2[j - L];
}
L += l;
s[L++] = '$';
}
s[L] = 0;
n = L + 1;
build_sa(128);
getHeight();
init();
int p = -1, len = 0, cnt = 0, pre = -1;
if(sa[1] < k) q[cnt++] = sa[1];
else pre = sa[1];
for(int i = 2; i < n; i++) {
while(i < n && sa[i] < k) {
q[cnt++] = sa[i];
i++;
}
if(i == n) break;
for(int j = 0; j < cnt; j++) {
int tmp1;
if((tmp1 = query(rnk[q[j]], rnk[sa[i]])) + q[j] < k) {
int tmp2;
if(pre != -1 && (tmp2 = query(rnk[q[j]], rnk[pre])) + q[j] < k) {
int tlen = max(tmp1, tmp2) + 1;
if((q[j] + tlen <= k) && (p == -1 || tlen < len)) {
p = q[j];
len = tlen;
}
}
if(pre == -1) {
int tlen = tmp1 + 1;
if((q[j] + tlen <= k) && (p == -1 || tlen < len)) {
p = q[j];
len = tlen;
}
}
}
}
cnt = 0;
if(sa[i] >= k) pre = sa[i];
}
for(int i = 0; i < cnt; i++) {
int tmp1;
if(pre != -1 && (tmp1 = query(rnk[q[i]], rnk[pre])) + q[i] < k) {
int tlen = tmp1 + 1;
if((q[i] + tlen <= k) && (p == -1 || tlen < len)) {
p = q[i];
len = tlen;
}
}
}
printf("Case #%d: ", kase++);
if(p == -1) puts("Impossible");
else {
for(int i = p; i < p + len; i++) printf("%c", s[i]);
printf("\n");
}
}
return 0;
}