poj2728(最小比率生成树)
poj2728
题意
给出 n 个点的坐标和它的高度,求一颗生成树使得树上所连边的两点高度差之和除以距离之和最小。
分析
01分数规划+最小生成树。
对于所有的边,在求最小生成树过程中有选或不选的问题,
首先根据01分数规划,我们要使 $ l = \frac{\sum_{i=1}^{n} height[i] * exist[i]}{\sum_{i=1}^{n} dis[i] * exist[i]}$ (exist[i]表示是否有这条边)最小,
设 \(F(l) = {\sum height[i]*exist[i]}-l*{\sum dis[i]*exist[i]}\) ,我们要使 \(l\) 尽可能的小, \(F(l)\) 随 \(l\) 减小而递增,如果 \(F(l) < 0\) ,
\(\frac{\sum_{i=1}^{n} height[i] * exist[i]}{\sum_{i=1}^{n} dis[i] * exist[i]} < l\) ,即存在更优的 \(l\) ,当 \(F(l) = 0\) 时,即为最终最终答案 \(l\) 。
设 \(D(l) = height[i] - dis[i] * l\) ,把它作为边,求最小生成树,那么求得值 \(F(l)\) 一定是尽可能小的,越有可能出现更优的 \(l\) 。
本题适于采用迭代法,因为在求最小生成树的过程中,就可以计算出更优的 \(l\) 值。
code(二分法)
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 1e3 + 10;
const double INF = 1e15;
int n;
double dist(double x1, double y1, double x2, double y2) {
return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}
struct node {
double x, y, h;
}a[MAXN];
double height[MAXN][MAXN];
double map[MAXN][MAXN];
double dis[MAXN];
int vis[MAXN];
double prime(double rate) {
double sum = 0;
memset(vis, 0, sizeof vis);
for(int i = 1; i <= n; i++) {
dis[i] = INF;
}
dis[1] = 0;
for(int i = 0; i < n; i++) {
double MIN = INF;
int k;
for(int j = 1; j <= n; j++) {
if(!vis[j] && dis[j] < MIN) MIN = dis[k = j];
}
vis[k] = 1;
sum += MIN;
for(int j = 1; j <= n; j++) {
if(!vis[j] && dis[j] > height[k][j] - rate * map[k][j]) {
dis[j] = height[k][j] - rate * map[k][j];
}
}
}
return sum;
}
void solve() {
double l = 0, r = 1e5, mid = 0;
while(r - l > 1e-6) {
mid = (l + r) / 2;
if(prime(mid) < 0) r = mid;
else l = mid;
}
printf("%.3f\n", mid);
}
int main() {
while(cin >> n && n) {
for(int i = 1; i <= n; i++) {
cin >> a[i].x >> a[i].y >> a[i].h;
for(int j = 1; j <= i; j++) {
map[i][j] = map[j][i] = dist(a[i].x, a[i].y, a[j].x, a[j].y);
height[i][j] = height[j][i] = abs(a[i].h - a[j].h);
}
}
solve();
}
return 0;
}
code(迭代法)
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 1e3 + 10;
const double INF = 1e15;
int n;
double dist(double x1, double y1, double x2, double y2) {
return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}
struct node {
double x, y, h;
}a[MAXN];
double height[MAXN][MAXN];
double map[MAXN][MAXN];
double dis[MAXN];
int vis[MAXN], pre[MAXN];
double prime(double rate) {
double sum = 0;
double sumh = 0, sumd = 0;
memset(vis, 0, sizeof vis);
for(int i = 1; i <= n; i++) {
dis[i] = INF;
pre[i] = 0;
}
dis[1] = 0;
for(int i = 0; i < n; i++) {
double MIN = INF;
int k;
for(int j = 1; j <= n; j++) {
if(!vis[j] && dis[j] < MIN) {
MIN = dis[k = j];
}
}
vis[k] = 1;
sum += MIN;
sumd += map[pre[k]][k];
sumh += height[pre[k]][k];
for(int j = 1; j <= n; j++) {
if(!vis[j] && dis[j] > height[k][j] - rate * map[k][j]) {
dis[j] = height[k][j] - rate * map[k][j];
pre[j] = k;
}
}
}
return sumh / sumd;
}
void solve() {
double k = 0, tmp;
while(1) {
tmp = prime(k);
if(fabs(tmp - k) < 1e-6) break;
else k = tmp;
}
printf("%.3f\n", k);
}
int main() {
while(cin >> n && n) {
for(int i = 1; i <= n; i++) {
cin >> a[i].x >> a[i].y >> a[i].h;
for(int j = 1; j <= i; j++) {
map[i][j] = map[j][i] = dist(a[i].x, a[i].y, a[j].x, a[j].y);
height[i][j] = height[j][i] = abs(a[i].h - a[j].h);
}
}
solve();
}
return 0;
}